PREDICTING GROUNDWATER QUALITY IN DRINKING WATER WELLS IN THE GLACIAL AQUIFER SYSTEM, NORTHERN USA

2018 ◽  
Author(s):  
Melinda L. Erickson ◽  
◽  
Craig J. Brown ◽  
Paul E. Stackelberg ◽  
Bernard T. Nolan
2011 ◽  
Vol 9 (3) ◽  
pp. 609-616 ◽  
Author(s):  
Joseph T. Zume

Several cultures of north-central Nigeria do not use community cemeteries. Instead, human remains are buried in and around family compounds, often in shallow and sometimes unmarked graves. At several locations, graves and drinking water wells end up too close to be presumed environmentally safe. This paper reports findings of a pilot study that explored the potential for groundwater contamination from gravesites in some rural settlements of north-central Nigeria. Preliminary results suggest that the long-standing burial practices among some cultures of rural north-central Nigeria may potentially compromise groundwater quality, which is, by far, their most important source of drinking water.


2020 ◽  
Vol 21 (77) ◽  
Author(s):  
Janete Facco ◽  
Fabio Luiz Carasek ◽  
Sival Francisco de Oliveira Junior ◽  
Manuela Gazzoni dos Passos

The objective of this work was to evaluate the groundwater quality of the Guarani/Serra Geral Integrated Aquifer System (GAIS / SGAIS) in a region located in the western part of the state of Santa Catarina. A total of 105 water wells were selected which five are exploring water from the Guarani Aquifer and 100 from the Serra Geral Aquifer. A sample of each well was submitted to microbiological (total coliforms and Escherichia coli) and physicochemical analyzes (dissolved oxygen, pH, turbidity, electrical conductivity, alkalinity, chlorides, fluorine, sulfates, potassium, sodium, calcium, magnesium, iron, manganese, nitrate). For analyze possible contamination by BTEX hydrocarbons (benzene, toluene, ethyl benzene, xylenes) the water of 25 wells in the urban environment was analyzed in strategic points close to possible risk of risk contamination agents. In another 25 wells in the rural area the water was collected for analyze the presence of glyphosate. Some groundwater with turbidity, pH, iron, manganese, total and thermotolerant coliforms were found in disagreement with Ministry of Health Ordinance 2914/2011. Furthermore, there was no BTEX and glyphosate contamination detected in any of the wells.


2012 ◽  
Vol 12 (5) ◽  
pp. 699-706 ◽  
Author(s):  
B. S. Marti ◽  
G. Bauser ◽  
F. Stauffer ◽  
U. Kuhlmann ◽  
H.-P. Kaiser ◽  
...  

Well field management in urban areas faces challenges such as pollution from old waste deposits and former industrial sites, pollution from chemical accidents along transport lines or in industry, or diffuse pollution from leaking sewers. One possibility to protect the drinking water of a well field is the maintenance of a hydraulic barrier between the potentially polluted and the clean water. An example is the Hardhof well field in Zurich, Switzerland. This paper presents the methodology for a simple and fast expert system (ES), applies it to the Hardhof well field, and compares its performance to the historical management method of the Hardhof well field. Although the ES is quite simplistic it considerably improves the water quality in the drinking water wells. The ES knowledge base is crucial for successful management application. Therefore, a periodic update of the knowledge base is suggested for the real-time application of the ES.


2018 ◽  
Author(s):  
Emily Berquist ◽  
◽  
Helen Fitzgerald Malenda ◽  
Melinda L. Erickson

Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2159
Author(s):  
George Bennett ◽  
Jill Van Reybrouck ◽  
Ceven Shemsanga ◽  
Mary Kisaka ◽  
Ines Tomašek ◽  
...  

This study characterises high-fluoride groundwater in the aquifer system on the flanks of Mount Meru, focusing on parts of the flanks that were only partially or not at all covered by previous research. Additionally, we analyse the impact of rainwater recharge on groundwater chemistry by monitoring spring discharges during water sampling. The results show that the main groundwater type in the study area is NaHCO3 alkaline groundwater (average pH = 7.8). High F− values were recorded: in 175 groundwater samples, the concentrations range from 0.15 to 301 mg/L (mean: 21.89 mg/L, median: 9.67 mg/L), with 91% of the samples containing F− values above the WHO health-based guideline for drinking water (1.5 mg/L), whereas 39% of the samples have Na+ concentrations above the WHO taste-based guideline of 200 mg/L. The temporal variability in F− concentrations between different seasons is due to the impact of the local groundwater recharge. We recommend that a detailed ecohydrological study should be carried out for the low-fluoride springs from the high-altitude recharge areas on the eastern and northwestern flanks of Mount Meru inside Arusha National Park. These springs are extracted for drinking purposes. An ecohydrological study is required for the management of these springs and their potential enhanced exploitation to ensure the sustainability of this water extraction practice. Another strategy for obtaining safe drinking water could be to use a large-scale filtering system to remove F− from the groundwater.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Natasa Skrbic ◽  
Vaidotas Kisielius ◽  
Ann-Katrin Pedersen ◽  
Sarah C. B. Christensen ◽  
Mathilde J. Hedegaard ◽  
...  

Abstract Background Ptaquiloside (PTA), caudatoside (CAU) and ptesculentoside (PTE) are carcinogenic illudane glycosides found in bracken ferns (Pteridium spp.) world-wide. The environmentally mobile PTA entails both acute and chronic toxicity. A comparable risk might be associated with the structurally similar CAU and PTE. It is of great health concern if these compounds are present in drinking water, however, it is currently unknown if these compounds can detected in wells in bracken-dominated regions. This study investigates the presence of PTA, CAU, PTE, and their corresponding hydrolysis products pterosins B (PtB), A (PtA) and G (PtG) in water wells in Denmark, Sweden and Spain. Water samples from a total of 77 deep groundwater wells (40–100 m) and shallow water wells (8–40 m) were collected and preserved in the field, pre-concentrated in the laboratory and analysed by liquid chromatography–mass spectrometry (LC–MS). Results Deep groundwater wells contained neither illudane glycosides nor their pterosins. However, seven private shallow wells contained at least one of the illudane glycosides and/or pterosins at concentrations up to 0.27 µg L−1 (PTA), 0.75 µg L−1 (CAU), 0.05 µg L−1 (PtB), 0.03 µg L−1 (PtA) and 0.28 µg L−1 (PtG). This is the first finding of illudane glycosides and pterosins in drinking water wells. Conclusions Detected concentrations of illudane glycosides in some of investigated wells exceeded the suggested maximum tolerable concentrations of PTA, although they were used for drinking water purpose. Contaminated wells were shallow with neutral pH and lower electric conductivity compared to deep groundwater wells with no illudane glycosides nor pterosins.


2021 ◽  
Vol 197 ◽  
pp. 117089
Author(s):  
Katie White ◽  
Sarah Dickson-Anderson ◽  
Anna Majury ◽  
Kevin McDermott ◽  
Paul Hynds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document