scholarly journals Perturbation of Spc25 expression affects meiotic spindle organization, chromosome alignment and spindle assembly checkpoint in mouse oocytes.

Cell Cycle ◽  
2010 ◽  
Vol 9 (22) ◽  
pp. 4552-4559 ◽  
Author(s):  
Shao-Chen Sun ◽  
Seung-Eun Lee ◽  
Yong-Nan Xu ◽  
Nam-Hyung Kim
2012 ◽  
Vol 23 (20) ◽  
pp. 3970-3981 ◽  
Author(s):  
Janet E. Holt ◽  
Simon I. R. Lane ◽  
Phoebe Jennings ◽  
Irene García-Higuera ◽  
Sergio Moreno ◽  
...  

FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.


2019 ◽  
Author(s):  
Zi-Yun Yi ◽  
Tie-Gang Meng ◽  
Xue-Shan Ma ◽  
Jian Li ◽  
Chun-Hui Zhang ◽  
...  

AbstractCell division cycle protein CDC6 is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from Pro-MI to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (GV breakdown, GVBD) through regulation of Cdh1 and cyclin B1 expression and CDK1 phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation and spindle assembly checkpoint (SAC) activation, leading to significant Pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.Summary statementWe show that CDC6 is indispensable for maintaining G2 arrest of mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.


2011 ◽  
Vol 17 (3) ◽  
pp. 431-439 ◽  
Author(s):  
Shao-Chen Sun ◽  
Ding-Xiao Zhang ◽  
Seung-Eun Lee ◽  
Yong-Nan Xu ◽  
Nam-Hyung Kim

AbstractNdc80 (called Hec1 in human), the core component of the Ndc80 complex, is involved in regulation of both kinetochore-microtubule interactions and the spindle assembly checkpoint in mitosis; however, its role in meiosis remains unclear. Here, we report Ndc80 expression, localization, and possible functions in mouse oocyte meiosis. Ndc80 mRNA levels gradually increased during meiosis. Immunofluorescent staining showed that Ndc80 was restricted to the germinal vesicle and associated with spindle microtubules from the Pro-MI to MII stages. Ndc80 was localized on microtubules and asters in the cytoplasm after taxol treatment, while Ndc80 staining was diffuse after disruption of microtubules by nocodazole treatment, confirming its microtubule localization. Disruption of Ndc80 function by either siRNA injection or antibody injection resulted in severe chromosome misalignment, spindle disruption, and precocious polar body extrusion. Our data show a unique localization pattern of Ndc80 in mouse oocytes and suggest that Ndc80 may be required for chromosome alignment and spindle organization, and may regulate spindle checkpoint activity during mouse oocyte meiosis.


2004 ◽  
Vol 167 (6) ◽  
pp. 1037-1050 ◽  
Author(s):  
Chizuko Tsurumi ◽  
Steffen Hoffmann ◽  
Stephan Geley ◽  
Ralph Graeser ◽  
Zbigniew Polanski

In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis in vitro. Passage through meiosis I was accelerated, but even though the SAC was disrupted, injected oocytes still arrested at metaphase II. Bub1dn-injected oocytes released from CSF and treated with nocodazole to disrupt the second meiotic spindle proceeded into interphase, whereas noninjected control oocytes remained arrested at metaphase. Similar results were obtained using dominant-negative forms of Mad2 and BubR1, as well as checkpoint resistant dominant APC/C activating forms of Cdc20. Thus, SAC proteins are required for checkpoint functions in meiosis I and II, but, in contrast to frog eggs, the SAC is not required for establishing or maintaining the CSF arrest in mouse oocytes.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Chia Huei Tan ◽  
Ivana Gasic ◽  
Sabina P Huber-Reggi ◽  
Damian Dudka ◽  
Marin Barisic ◽  
...  

Chromosome alignment in the middle of the bipolar spindle is a hallmark of metazoan cell divisions. When we offset the metaphase plate position by creating an asymmetric centriole distribution on each pole, we find that metaphase plates relocate to the middle of the spindle before anaphase. The spindle assembly checkpoint enables this centering mechanism by providing cells enough time to correct metaphase plate position. The checkpoint responds to unstable kinetochore–microtubule attachments resulting from an imbalance in microtubule stability between the two half-spindles in cells with an asymmetric centriole distribution. Inactivation of the checkpoint prior to metaphase plate centering leads to asymmetric cell divisions and daughter cells of unequal size; in contrast, if the checkpoint is inactivated after the metaphase plate has centered its position, symmetric cell divisions ensue. This indicates that the equatorial position of the metaphase plate is essential for symmetric cell divisions.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Josie K. Collins ◽  
Simon I. R. Lane ◽  
Julie A. Merriman ◽  
Keith T. Jones

Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Osamah Batiha ◽  
Andrew Swan

The spindle assembly checkpoint (SAC) plays an important role in mitotic cells to sense improper chromosome attachment to spindle microtubules and to inhibit APCFzy-dependent destruction of cyclin B and Securin; consequent initiation of anaphase until correct attachments are made. In Drosophila , SAC genes have been found to play a role in ensuring proper chromosome segregation in meiosis, possibly reflecting a similar role for the SAC in APCFzy inhibition during meiosis. We found that loss of function mutations in SAC genes, Mad2, zwilch, and mps1, do not lead to the predicted rise in APCFzy-dependent degradation of cyclin B either globally throughout the egg or locally on the meiotic spindle. Further, the SAC is not responsible for the inability of APCFzy to target cyclin B and promote anaphase in metaphase II arrested eggs from cort mutant females. Our findings support the argument that SAC proteins play checkpoint independent roles in Drosophila female meiosis and that other mechanisms must function to control APC activity.


2012 ◽  
Vol 199 (2) ◽  
pp. 285-301 ◽  
Author(s):  
Ana R.R. Maia ◽  
Zaira Garcia ◽  
Lilian Kabeche ◽  
Marin Barisic ◽  
Stefano Maffini ◽  
...  

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)–microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT–MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT–MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 “phospho-switch” that temporally regulates KT–MT attachment stability.


1996 ◽  
Vol 133 (1) ◽  
pp. 75-84 ◽  
Author(s):  
W A Wells ◽  
A W Murray

The spindle assembly checkpoint is the mechanism or set of mechanisms that prevents cells with defects in chromosome alignment or spindle assembly from passing through mitosis. We have investigated the effects of mini-chromosomes on this checkpoint in budding yeast by performing pedigree analysis. This method allowed us to observe the frequency and duration of cell cycle delays in individual cells. Short, centromeric linear mini-chromosomes, which have a low fidelity of segregation, cause frequent delays in mitosis. Their circular counterparts and longer linear mini-chromosomes, which segregate more efficiently, show a much lower frequency of mitotic delays, but these delays occur much more frequently in divisions where the mini-chromosome segregates to only one of the two daughter cells. Using a conditional centromere to increase the copy number of a circular mini-chromosome greatly increases the frequency of delayed divisions. In all cases the division delays are completely abolished by the mad mutants that inactivate the spindle assembly checkpoint, demonstrating that the Mad gene products are required to detect the subtle defects in chromosome behavior that have been observed to arrest higher eukaryotic cells in mitosis.


Sign in / Sign up

Export Citation Format

Share Document