scholarly journals Fructose-1,6-bisphosphatase, Malate Dehydrogenase, Isocitrate Lyase, Phosphoenolpyruvate Carboxykinase, Glyceraldehyde-3-phosphate Dehydrogenase, and Cyclophilin A are secreted inSaccharomyces cerevisiaegrown in low glucose

2013 ◽  
Vol 6 (6) ◽  
pp. e27216 ◽  
Author(s):  
Bennett J Giardina ◽  
Hui-Ling Chiang
2008 ◽  
Vol 7 (10) ◽  
pp. 1742-1749 ◽  
Author(s):  
Raquel Jardón ◽  
Carlos Gancedo ◽  
Carmen-Lisset Flores

ABSTRACT The genes encoding gluconeogenic enzymes in the nonconventional yeast Yarrowia lipolytica were found to be differentially regulated. The expression of Y. lipolytica FBP1 (YlFBP1) encoding the key enzyme fructose-1,6-bisphosphatase was not repressed by glucose in contrast with the situation in other yeasts; however, this sugar markedly repressed the expression of YlPCK1, encoding phosphoenolpyruvate carboxykinase, and YlICL1, encoding isocitrate lyase. We constructed Y. lipolytica strains with two different disrupted versions of YlFBP1 and found that they grew much slower than the wild type in gluconeogenic carbon sources but that growth was not abolished as happens in most microorganisms. We attribute this growth to the existence of an alternative phosphatase with a high Km (2.3 mM) for fructose-1,6-bisphosphate. The gene YlFBP1 restored fructose-1,6-bisphosphatase activity and growth in gluconeogenic carbon sources to a Saccharomyces cerevisiae fbp1 mutant, but the introduction of the FBP1 gene from S. cerevisiae in the Ylfbp1 mutant did not produce fructose-1,6-bisphosphatase activity or growth complementation. Subcellular fractionation revealed the presence of fructose-1,6-bisphosphatase both in the cytoplasm and in the nucleus.


1991 ◽  
Vol 71 (1) ◽  
pp. 182-191 ◽  
Author(s):  
R. J. Talmadge ◽  
H. Silverman

The chronically active (pseudomyotonic) gastrocnemius muscle in the C57B16J dy2J/dy2J mouse contains both elevated lactate and glycogen as well as fibers that have high amounts of glycogen and enhanced glyconeogenic activity. In the present study we analyze the activities of some key glyconeogenic enzymes to assess the causes of elevated muscle glycogen and to determine the pathway for glycogen synthesis from lactate. Glycogen synthase, malate dehydrogenase, phosphoenolpyruvate carboxykinase, and malic enzyme were all elevated in homogenates of the chronically active muscle. Activities of glycogen phosphorylase and fructose 1,6-bisphosphatase were decreased in whole muscle homogenates. Histochemistry demonstrated that the high-glycogen fibers were typically fast-twitch glycolytic fibers that had high glycogen synthase, glycogen phosphorylase, and malic enzyme activities. Malate dehydrogenase activity followed succinate dehydrogenase activity and did not correlate to high-glycogen fibers. Thus the high-glycogen fibers have an elevated enzymatic capacity for glycogen synthesis from lactate, and the pathway may involve use of the pyruvate kinase bypass enzymes.


2001 ◽  
Vol 29 (2) ◽  
pp. 283-286 ◽  
Author(s):  
E. L. Rylott ◽  
M. A. Hooks ◽  
I. A. Graham

Molecular genetic approaches in the model plant Arabidopsis thaliana (ColO) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: β-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolasemediated steps of β-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of β-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.


1986 ◽  
Vol 32 (12) ◽  
pp. 969-972 ◽  
Author(s):  
Albert J. Wilson ◽  
J. K. Bhattacharjee

Phosphoenolpyruvate carboxykinase (PEPCKase) and pyruvate kinase (PKase) were measured in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources. The PEPCKase activity was highest in ethanol-grown cells. However, high PEPCKase activity was also observed in cells grown in 1% glucose, especially as compared with the activity of sucrose-, maltose-, or galactose-grown cells. Activity was first detected after 12 h when glucose was exhausted from the growth medium. The PKase activity was very high in glucose-grown cells; considerable activity was also present in ethanol- and pyruvate-grown cells. The absolute requirement of respiration for gluconeogenesis was demonstrated by the absence or significantly low levels of PEPCKase and fructose-1,6-bisphosphatase activities observed in respiratory deficient mutants, as well as in wild-type S. cerevisiae cells grown in the presence of glucose and antimycin A or chloramphenicol. Obligate glycolytic and gluconeogenic enzymes were present sumultaneously only in stationary phase cells, but not in exponential phase cells; hence futile cycling could not occur in log phase cells regardless of the presence of carbon source in the growth medium.


1998 ◽  
Vol 274 (3) ◽  
pp. G509-G517 ◽  
Author(s):  
Stephan Kaiser

Hypertonic-induced cell shrinkage increases glucose release in H-4-II-E rat hepatoma cells. This is paralleled by a concomitant increase in the mRNA levels of the rate-limiting enzymes of the pathway of gluconeogenesis, phospho enolpyruvate carboxykinase (PCK) and fructose-1,6-bisphosphatase (FBP), of seven- and fivefold, respectively. In contrast, hypotonic-induced swelling of the cells results in a transient decrease in PCK and FBP mRNAs to 15% and 39% of control levels. The antagonistic effects of hyper- and hypotonicity mimic the counteracting effects of adenosine 3′,5′-cyclic monophosphate (cAMP) and insulin on PCK and FBP mRNA levels. The hypertonic-induced increase in mRNA levels is due to an enhanced transcriptional rate, whereas the decrease in mRNAs caused by hypotonicity results from a decrease in transcription as well as mRNA stability. The inductive effect of hypertonicity does not require ongoing protein synthesis and acts independently of the cAMP-dependent protein kinase and protein kinase C pathways. These results suggest that cell volume changes in liver cells may play an important role in regulating hepatic glucose metabolism by altered gene expression.


1968 ◽  
Vol 107 (4) ◽  
pp. 455-465 ◽  
Author(s):  
C. Chapman ◽  
W Bartley

1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.


Sign in / Sign up

Export Citation Format

Share Document