scholarly journals The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria

1968 ◽  
Vol 107 (4) ◽  
pp. 455-465 ◽  
Author(s):  
C. Chapman ◽  
W Bartley

1. Aerobically grown yeast having a high activity of glyoxylate-cycle, citric acid-cycle and electron-transport enzymes was transferred to a medium containing 10% glucose. After a lag phase of 30min. the yeast grew exponentially with a mean generation time of 94min. 2. The enzymes malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase and NADH–cytochrome c oxidoreductase lost 45%, 17%, 27% and 46% of their activity respectively during the lag phase. 3. When growth commenced pyruvate kinase, pyruvate decarboxylase, alcohol dehydrogenase, glutamate dehydrogenase (NADP+-linked) and NADPH–cytochrome c oxidoreductase increased in activity, whereas aconitase, isocitrate dehydrogenase (NAD+- and NADP+-linked), α-oxoglutarate dehydrogenase, fumarase, malate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase, NADH oxidase, NADPH oxidase, cytochrome c oxidase, glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, isocitrate lyase and glucose 6-phosphate dehydrogenase decreased. 4. During the early stages of growth the loss of activity of aconitase, α-oxoglutarate dehydrogenase, fumarase and glucose 6-phosphate dehydrogenase could be accounted for by dilution by cell division. The lower rate of loss of activity of isocitrate dehydrogenase (NAD+- and NADP+-linked), glutamate dehydrogenase (NAD+-linked), glutamate–oxaloacetate transaminase, NADPH oxidase and cytochrome c oxidase implies their continued synthesis, whereas the higher rate of loss of activity of malate dehydrogenase, isocitrate lyase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and NADH oxidase means that these enzymes were actively removed. 5. The mechanisms of selective removal of enzyme activity and the control of the residual metabolic pathways are discussed.

1973 ◽  
Vol 26 (2) ◽  
pp. 453 ◽  
Author(s):  
AG Shanahan ◽  
JE O'hagan

The enzymatic activities of the succinate-<;ytochrome c reductase system, the NADH--cytochrome c reductase system, the NADH oxidase system, and cytochrome c oxidase were determined spectrophotometrically in particulate preparations of eggs and larvae of B. micro plus.


1973 ◽  
Vol 136 (1) ◽  
pp. 195-207 ◽  
Author(s):  
R. K. Poole ◽  
D. Lloyd

1. Increased specific activities of cytochrome c oxidase, catalase, succinate dehydrogenase, succinate–cytochrome c oxidoreductase, NADH–cytochrome c oxidoreductase and malate dehydrogenase were observed during glucose de-repression of Schizosaccharomyces pombe. 2. The cell-cycle of this organism was analysed by three different methods: (a) harvesting of cells at intervals from a synchronous culture, (b) separation of cells by rate-zonal centrifugation into different size classes and (c) separation of cells by isopycnic-zonal centrifugation into different density classes. 3. Measurement of enzyme activities during the cell-cycle showed that all the enzymes assayed [cytochrome c oxidase, catalase, acid p-nitrophenylphosphatase, NADH-dehydrogenase, NADH–cytochrome c oxidoreductase, NADPH–cytochrome c oxidoreductase, succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase (NADP) and fumarate hydratase] show periodic expression as ‘peaks’. 4. Cytochrome c oxidase shows a single maximum at 0.67 of a cycle, whereas succinate dehydrogenase exhibits two maxima separated by 0.5 of a cell-cycle. 5. All other enzymes assayed showed two distinct maxima per cell-cycle; for catalase, malate dehydrogenase and NADPH–cytochrome c oxidoreductase there is the possibility of multiple fluctuations. 6. The single maximum of cytochrome c oxidase appears at a similar time in the cycle to one maximum of each of the other enzymes studied, except for NADH dehydrogenase. 7. These results are discussed with reference to previous observations on the expression of enzyme activities during the cell-cycle of yeasts.


1984 ◽  
Vol 26 (4) ◽  
pp. 459-468 ◽  
Author(s):  
D. B. Neale ◽  
J. C. Weber ◽  
W. T. Adams

Methods for resolving electrophoretic variants from extracts of needle tissue of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) are described, and the inheritance of 12 of at least 15 loci that control allozymes from 11 enzyme systems are established. Evidence for the inheritance of allozyme variants was obtained in three ways: (i) comparison in seed orchard clones of allozyme genotypes determined from both megagametophyte and needle tissue; (ii) analysis of segregating full-sib progenies of seed orchard clones; and (iii) comparison of needle allozyme pattern phenotypes to previously reported embryo phenotypes. Ten of the 12 loci (coding phosphoglucomutase, PGM(1) and PGM(2); glycerate dehydrogenase, GLYDH; phosphoglucose isomerase, PG1(2); glutamate dehydrogenase, GDH; glucose-6-phosphate dehydrogenase, G-6PD; 6-phosphogluconate dehydrogenase, 6-PGD(1); isocitrate dehydrogenase, IDH; diaphorase, DIA(2); malate dehydrogenase, MDH(1)) produce clear bands in seed tissue; however, glutamate oxaloacetate transaminase GOT(3) (N) was not found in seeds and shikimic dehydrogenase (SDH) could only be clearly resolved in needles (N). Several enzymes active in seed tissue could not be detected in needle tissues.Key words: Douglas-fir, needle tissue isozymes, inheritance.


2019 ◽  
Vol 2 (2) ◽  
pp. 1-21 ◽  
Author(s):  
Elina Mitra ◽  
Bharati Bhattacharjee ◽  
Palash Kumar Pal ◽  
Arnab Kumar Ghosh ◽  
Sanatan Mishra ◽  
...  

Cadmium (Cd) is a notorious environmental pollutant known for its wide range of toxicities to organisms. Thus, the present study is designed to examine whether melatonin, a potent antioxidant, protects against Cd-induced oxidative damage in the heart, liver and kidney of rats. Cd treatment at a dose of 0.44 mg/kg for 15 days caused severe damage in all these organs. These included significantly increased activities of SGPT, SGOT, lactate dehydrogenase- 1 and 5 and ALP and levels of total lactate, creatinine, lipid peroxidation, protein carbonyl content and reduced glutathione while the activities of superoxide dismutases, catalase, glutathione peroxidase, glutathione reductase and glutathione-S-transferase along with mitochondrial pyruvate dehydrogenase, isocitrate dehydrogenase, α-keto glutarate dehydrogenase, succinate dehydrogenase, NADH-cytochrome-c-oxidoreductase and cytochrome-c-oxidase were significantly reduced by Cd. However, if melatonin was given orally 30 min before Cd injection, all these alterations induced by Cd were significantly preserved by melatonin. Histological observations also demonstrated that Cd exposure caused cellular lesions, promoting necrotic or apoptotic changes. Notably, all these changes were significantly protected by melatonin. The results suggest that melatonin is a beneficial molecule to ameliorate Cd-induced oxidative damage in the heart, liver and kidney tissues of rats with its powerful antioxidant capacity, heavy metal chelating activity and competition of binding sites with Cd to the GSH and catalase.


1978 ◽  
Vol 174 (1) ◽  
pp. 267-275 ◽  
Author(s):  
J Barrett ◽  
C N Hunter ◽  
O T G Jones

Differential centrifugation of suspensions of French-press-disrupted Rhodopseudomonas spheroides yielded a light particulate fraction that was different in many properties from the bulk membrane fraction. It was enriched in cytochrome c and had a low cytochrome b content. When prepared from photosynthetically grown cells this fraction had a very low specific bacteriochlorophyll content. The cytochrome c of the light particles differed in absorption maxima at 77K from cytochrome c2 attached to membranes; there was pronounced splitting of the alpha-band, as is found in cytochrome c2 free in solution. Potentiometric titration at A552–A540 showed the presence of two components that fitted an n = 1 titration; one component had a midpoint redox potential of +345mV, like cytochrome c2 in solution, and the second had E0′ at pH 7.0 of +110 mV, and they were present in a ratio of approx. 2:3. Difference spectroscopy at 77K showed that the spectra of the two components were very similar. More of a CO-binding component was present in particles from photosynthetically grown cells. Light membranes purified by centrifugation on gradients of 5–60% (w/w) sucrose retained the two c cytochromes; they contained no detectable succinate-cytochrome c reductase or bacteriochlorophyll and very little ubiquinone, but they contained NADH-cytochrome c reductase and some phosphate. Electrophoresis on sodium dodecyl sulphate/polyacrylamide gels showed that the light membranes of aerobically and photosynthetically grown cells were very similar and differed greatly from other membrane fractions of R. spheroides.


Genome ◽  
1987 ◽  
Vol 29 (2) ◽  
pp. 239-246 ◽  
Author(s):  
S. G. Ernst ◽  
D. E. Keathley ◽  
J. W. Hanover

Thirteen loci from 11 enzyme systems were identified among full-sib and half-sib progeny of blue and Engelmann spruce. Eleven of the loci were expressed in bud, embryo, and megagametophyte tissue; the remaining two loci were expressed only in embryo and megagametophyte tissue. There were no mobility differences observed between loci expressed in seed and bud tissues. The mode of inheritance for 10 of the loci was confirmed based on progeny genotypic distributions. For the two loci not expressed in bud tissue, acid phosphatase (Acp-2) and diaphorase (Dia-2), inheritance was inferred from pooled segregation ratios of megagametophytes from open-pollinated seed from heterozygous females. The inheritance of glutamate oxaloacetate transaminase (Got-3) was also inferred from segregation ratios and diploid embryo phenotypes of open-pollinated progeny owing to a lack of variability at this locus among the 40 parents in the mating design. Two loci, aldolase (Ald) and malate dehydrogenase (Mdh-2), were monomorphic among the 20 parents of both species. Key words: isozymes, Engelmann spruce, blue spruce, Picea.


1981 ◽  
Vol 52 (1) ◽  
pp. 215-222
Author(s):  
M. Fujita ◽  
H. Ohta ◽  
T. Uezato

Endoplasmic reticulum membrane-rich fraction was obtained by subfractionation of the light microsomes from mouse jejunal mucosal epithelial cells. It was marked by high glucose-6-phosphatase, NADPH-cytochrome c reductase, and NADH-cytochrome c reductase activities and low Na+,K+-ATPase activity. The enrichment of Na+,K+-ATPase was 180-fold higher in the basolateral membranes than in the endoplasmic reticulum membrane-rich fraction relative to glucose-6-phosphatase. The protein peak that was phosphorylated in a Na-dependent manner was prominent in the basolateral membranes while it was a minor peak in the endoplasmic reticulum membrane-rich fraction. Under the electron microscope the fraction was seen to be composed of homogeneous small vesicles with thin smooth membranes.


1982 ◽  
Vol 201 (1) ◽  
pp. 9-18 ◽  
Author(s):  
G W Pettigrew ◽  
S Seilman

Cytochrome c (horse heart) was covalently linked to yeast cytochrome c peroxidase by using the cleavable bifunctional reagent dithiobis-succinimidyl propionate in 5 mM-sodium phosphate buffer, pH 7.0. A cross-linked complex of molecular weight 48 000 was purified in approx. 10% yield from the reaction mixture, which contained 1 mol of cytochrome c and 1 mol of cytochrome c peroxidase/mol. Of the total 40 lysine residues, four to six were blocked by the cross-linking agent. Dithiobis-succinimidylpropionate can also cross-link cytochrome c to ovalbumin, but cytochrome c peroxidase is the preferred partner for cytochrome c in a mixture of the three proteins. The cytochrome c cross-linked to the peroxidase can be rapidly reduced by free cytochrome c-557 from Crithidia oncopelti, and the equilibrium obtained can be used to calculate a mid-point oxidation-reduction potential for the cross-linked cytochrome of 243 mV. Mitochondrial NADH-cytochrome c reductase will reduce the bound cytochrome only very slowly, but the rate of reduction by ascorbate at high ionic strength approaches that for free cytochrome c. Bound cytochrome c reduced by ascorbate can be re-oxidized within 10s by the associated peroxidase in the presence of equimolar H2O2. In the standard peroxidase assay the cross-linked complex shows 40% of the activity of the free peroxidase. Thus the intrinsic ability of each partner in the complex to take part in electron transfer is retained, but the stable association of the two proteins affects access of reductants.


Sign in / Sign up

Export Citation Format

Share Document