On the Optimality for Cascade Connection of Passive Scattering Systems and the Best Minorant Outer Function

2002 ◽  
Vol 21 (1) ◽  
pp. 215-231
Author(s):  
Nguyen Minh Hang
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yang Li ◽  
Yoshiki Kubota ◽  
Masahiko Okamoto ◽  
Shintaro Shiba ◽  
Shohei Okazaki ◽  
...  

Abstract Background Daily anatomical deviations may distort the dose distribution in carbon ion radiotherapy (CIRT), which may cause treatment failure. Therefore, this study aimed to perform re-planning to maintain the dose coverage in patients with pancreatic cancer with passive scattering CIRT. Methods Eight patients with pancreatic cancer and 95 daily computed tomography (CT) sets were examined. Two types of adaptive plans based on new range compensators (RCs) (AP-1) and initial RCs (AP-2) were generated. In AP-2, each beam was optimized by manually adjusting the range shifter thickness and spread-out Bragg peak size to make dose reduction by < 3% of the original plan. Doses of the original plan with bone matching (BM) and tumor matching (TM) were examined for comparison. We calculated the accumulated dose using the contour and intensity-based deformable image registration algorithm. The dosimetric differences in respect to the original plan were compared between methods. Results Using TM and BM, mean ± standard deviations of daily CTV V95 (%) difference from the original plan was − 5.1 ± 6.2 and − 8.8 ± 8.8, respectively, but 1.2 ± 3.4 in AP-1 and − 0.5 ± 2.1 in AP-2 (P < 0.001). AP-1 and AP-2 enabled to maintain a satisfactory accumulated dose in all patients. The dose difference was 1.2 ± 2.8, − 2,1 ± 1.7, − 7.1 ± 5.2, and − 16.5 ± 15.0 for AP-1, AP-2, TM, and BM, respectively. However, AP-2 caused a dose increase in the duodenum, especially in the left–right beam. Conclusions The possible dose deterioration should be considered when performing the BM, even TM. Re-planning based on single beam optimization in passive scattering CIRT seems an effective and safe method of ensuring the treatment robustness in pancreatic cancer. Further study is necessary to spare healthy tissues, especially the duodenum.


2020 ◽  
Vol 26 (2) ◽  
pp. 131-161
Author(s):  
Florian Bourgey ◽  
Stefano De Marco ◽  
Emmanuel Gobet ◽  
Alexandre Zhou

AbstractThe multilevel Monte Carlo (MLMC) method developed by M. B. Giles [Multilevel Monte Carlo path simulation, Oper. Res. 56 2008, 3, 607–617] has a natural application to the evaluation of nested expectations {\mathbb{E}[g(\mathbb{E}[f(X,Y)|X])]}, where {f,g} are functions and {(X,Y)} a couple of independent random variables. Apart from the pricing of American-type derivatives, such computations arise in a large variety of risk valuations (VaR or CVaR of a portfolio, CVA), and in the assessment of margin costs for centrally cleared portfolios. In this work, we focus on the computation of initial margin. We analyze the properties of corresponding MLMC estimators, for which we provide results of asymptotic optimality; at the technical level, we have to deal with limited regularity of the outer function g (which might fail to be everywhere differentiable). Parallel to this, we investigate upper and lower bounds for nested expectations as above, in the spirit of primal-dual algorithms for stochastic control problems.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2301
Author(s):  
Yun-Sung Cho ◽  
Yun-Hyuk Choi

This paper describes a methodology for implementing the state estimation and enhancing the accuracy in large-scale power systems that partially depend on variable renewable energy resources. To determine the actual states of electricity grids, including those of wind and solar power systems, the proposed state estimation method adopts a fast-decoupled weighted least square approach based on the architecture of application common database. Renewable energy modeling is considered on the basis of the point of data acquisition, the type of renewable energy, and the voltage level of the bus-connected renewable energy. Moreover, the proposed algorithm performs accurate bad data processing using inner and outer functions. The inner function is applied to the largest normalized residue method to process the bad data detection, identification and adjustment. While the outer function is analyzed whether the identified bad measurements exceed the condition of Kirchhoff’s current law. In addition, to decrease the topology and measurement errors associated with transformers, a connectivity model is proposed for transformers that use switching devices, and a transformer error processing technique is proposed using a simple heuristic method. To verify the performance of the proposed methodology, we performed comprehensive tests based on a modified IEEE 18-bus test system and a large-scale power system that utilizes renewable energy.


Author(s):  
Roberto Gómez-García ◽  
Li Yang ◽  
José-María Muñoz-Ferreras ◽  
Dimitra Psychogiou

Abstract A class of multi-band planar diplexer with sub-sets of frequency-contiguous transmission bands is reported. Such a radio frequency (RF) device is suitable for lightweight high-frequency receivers aimed at multi-band/multi-purpose mobile satellite communications systems. It consists of two channelizing filters, each of them being made up of the in-series cascade connection of replicas of a constituent multi-passband/multi-embedded-stopband filtering stage. This building filtering stage defines a multi-passband transfer function for each channel, in which each main transmission band is split into various sub-passbands by the multi-stopband part. In this manner, each split passband gives rise to several sub-passbands that are imbricated with their counterpart ones of the other channel. The theoretical RF operational principles of the proposed multi-band diplexer approach with sub-sets of imbricated passbands are detailed by means of a coupling–routing–diagram formalism. Besides, the generation of additional transmission zeros in each channelizing filter for higher-selectivity realizations by exploiting cross-coupling techniques into it is also detailed. Furthermore, for experimental demonstration purposes, a microstrip proof-of-concept prototype of second-order octo-band diplexer in the frequency range of 1.5–2.5 GHz that consists of two quad-band channelizing filters with pairs of imbricated passbands is developed and characterized.


Sign in / Sign up

Export Citation Format

Share Document