Short Term, Low Dose Thyroxin Treatment of Euthyroid Patients with Type 2 Diabetes improves Peripheral Blood Flow and Overall Insulin Sensitivity

2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Vaia Lambadiari ◽  
Filio Spanoudi
2014 ◽  
Author(s):  
◽  
Leryn J. Boyle

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Individuals with type 2 diabetes (T2D) have blunted femoral artery insulin mediated blood flow which is critical for the delivery and uptake of glucose into skeletal muscle. However, it is unclear in humans the precise mechanisms by which insulin resistance impairs insulin stimulated blood flow. Further, chronic physical inactivity is a powerful stimulus for reduced insulin sensitivity and vascular dysfunction; however, the effects of short term, modest reductions in physical activity are limited. Thus, we examined 1) if inactivity for 5 days would impair endothelial function in healthy individuals (study one) 2) if reducing whole body insulin sensitivity, via 5 days of inactivity, would impair the blood flow response to insulin stimulation in parallel with glycemic control (study two) and 3) phosphorylation of endothelial nitric oxide (eNOS) and endothelin-1 (ET-1) production to insulin stimulation would be decreased and increased, respectively, in insulin resistant individuals (study three). We demonstrated significant reductions in endothelial function with only 5 days of reduced daily steps while blood flow to glucose ingestion was unaltered. Further, in obese humans with type 2 diabetes it does not appear that that the reduction in blood flow to 1 hr of insulin stimulation is due to altered peNOS or ET-1. Collectively, these data suggest that reduced daily physical activity and chronic insulin resistance mediate negative impacts on vascular function and insulin stimulated blood flow and signaling.


2020 ◽  
Vol 104 (S3) ◽  
pp. S564-S564
Author(s):  
Seong Jun Lim ◽  
Youngmin Ko ◽  
Monica Young Choi ◽  
Hey Rim Jung ◽  
Mi Joung Kim ◽  
...  

2008 ◽  
Vol 115 (9) ◽  
pp. 273-281 ◽  
Author(s):  
Matthew D. Hordern ◽  
Louise M. Cooney ◽  
Elaine M. Beller ◽  
Johannes B. Prins ◽  
Thomas H. Marwick ◽  
...  

The aim of the present study was to determine the effects of a 4-week exercise training intervention on blood glucose, insulin sensitivity, BMI (body mass index) and cardiorespiratory fitness in patients with Type 2 diabetes, and to identify and establish criteria for patients who are more likely to improve their blood glucose from short-term exercise training. A randomized, controlled trial of exercise training, comprising two supervised and one non-supervised sessions of individualized cardiorespiratory and resistance exercise per week, was performed in 132 healthy patients with Type 2 diabetes (exercise training group, n=68), with the aim of accumulating a minimum of 150 min of moderate-intensity exercise for 4 weeks. BMI, waist circumference, blood pressure, blood lipid profile, blood glucose, insulin, insulin sensitivity [calculated by HOMAIR (homoeostasis model assessment of insulin resistance) and QUICKI (quantitative insulin check index)], β-cell function (calculated by HOMAβ-Cell), HbA1c (glycated haemoglobin) and V̇O2max (maximal oxygen consumption) were measured at baseline and at 4 weeks. The exercise training group had significant improvements in V̇O2max, BMI and triacylglycerols (triglycerides). There were no significant changes in blood glucose, HOMAIR, QUICKI or HOMAβ-Cell. Decreases in blood glucose were significantly predicted by baseline blood glucose and HbA1c, with these variables accounting for 15.9% of the change in blood glucose (P<0.001). ROC (receiver operator characteristic) curve analysis revealed that patients with a blood glucose >8.85 mmol/l (sensitivity=73%, specificity=78%) and HbA1c >7.15% (sensitivity=79%, specificity=60%) were more likely to achieve a clinically significant decrease in blood glucose. In conclusion, in apparently healthy patients with Type 2 diabetes, a 4-week exercise intervention improved cardiorespiratory fitness, BMI and triacylglycerols. Elevated blood glucose and HbA1c predicted improvements in blood glucose.


2015 ◽  
Vol 21 (8) ◽  
pp. 863-865 ◽  
Author(s):  
Mark J W Hanssen ◽  
Joris Hoeks ◽  
Boudewijn Brans ◽  
Anouk A J J van der Lans ◽  
Gert Schaart ◽  
...  

2011 ◽  
Vol 111 (3) ◽  
pp. 657-664 ◽  
Author(s):  
Catherine R. Mikus ◽  
Seth T. Fairfax ◽  
Jessica L. Libla ◽  
Leryn J. Boyle ◽  
Lauro C. Vianna ◽  
...  

The vasodilatory effects of insulin account for up to 40% of insulin-mediated glucose disposal; however, insulin-stimulated vasodilation is impaired in individuals with type 2 diabetes, limiting perfusion and delivery of glucose and insulin to target tissues. To determine whether exercise training improves conduit artery blood flow following glucose ingestion, a stimulus for increasing circulating insulin, we assessed femoral blood flow (FBF; Doppler ultrasound) during an oral glucose tolerance test (OGTT; 75 g glucose) in 11 overweight or obese (body mass index, 34 ± 1 kg/m2), sedentary (peak oxygen consumption, 23 ± 1 ml·kg−1·min−1) individuals (53 ± 2 yr) with non-insulin-dependent type 2 diabetes (HbA1c, 6.63 ± 0.18%) before and after 7 days of supervised treadmill and cycling exercise (60 min/day, 60–75% heart rate reserve). Fasting glucose, insulin, and FBF were not significantly different after 7 days of exercise, nor were glucose or insulin responses to the OGTT. However, estimates of whole body insulin sensitivity (Matsuda insulin sensitivity index) increased ( P < 0.05). Before exercise training, FBF did not change significantly during the OGTT (1 ± 7, −7 ± 5, 0 ± 6, and 0 ± 5% of fasting FBF at 75, 90, 105, and 120 min, respectively). In contrast, after exercise training, FBF increased by 33 ± 9, 39 ± 14, 34 ± 7, and 48 ± 18% above fasting levels at 75, 90, 105, and 120 min, respectively ( P < 0.05 vs. corresponding preexercise time points). Additionally, postprandial glucose responses to a standardized breakfast meal consumed under “free-living” conditions decreased during the final 3 days of exercise ( P < 0.05). In conclusion, 7 days of aerobic exercise training improves conduit artery blood flow during an OGTT in individuals with type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document