Kinetic Model for the Sorption of Ni(II), Cu(II) and Zn(II) onto Cocos Mucifera Fibre Waste Biomass from Aqueous Solution

Author(s):  
Augustine K. Asiagwu ◽  
Hilary I. Owamah ◽  
Izinyon O. Christopher
2013 ◽  
Vol 52 (25-27) ◽  
pp. 4999-5006 ◽  
Author(s):  
Edris Hoseinzadeh ◽  
Mohammad-Reza Samarghandi ◽  
Gordon McKay ◽  
Naser Rahimi ◽  
Javad Jafari

2006 ◽  
Vol 3 (2) ◽  
pp. 161-174 ◽  
Author(s):  
Michael Horsfall ◽  
Fred Ogban ◽  
Eyitemi Emmanuel Akporhonor

2012 ◽  
Vol 27 ◽  
pp. 11-18
Author(s):  
Timi Tarawou ◽  
Michael Horsfall

The adsorption of chromium (VI) ions from aqueous solution was studied using pure and carbonized fluted pumpkin waste biomass (FPWB). The kinetic data shows a pseudo-first-order mechanism with rate constants of 1.26 × 10-2 and 1.933 × 10-2 mg g-1 min-1 for the pure and carbonized FPWB, respectively. While the pseudo-second-order mechanism has rate constants of 0.93 × 10-1 and 1.33 × 10-1 mg g-1 min-1 for the pure and carbonized waste biomass respectively. The pseudo-second order kinetic model was found to be more suitable for describing the experimental data based on the correlation coefficient values (R2) of 0.9975 and 0.9994 obtained for pure waste biomass (PWB) and carbonized waste biomass (CWB), respectively. The results obtained from this study show that PWB and CWB have very high removal capacity for chromium (VI) from aqueous solution over a range of reaction conditions. Thus, fluted pumpkin waste biomass (Telfairia occidentalis Hook F) is a potential sorbent for the treatment of industrial effluents containing chromium (VI) contaminant.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6436 J. Nepal Chem. Soc., Vol. 27, 2011 11-18Uploaded date: 16 July, 2012


Chemosphere ◽  
2017 ◽  
Vol 171 ◽  
pp. 19-30 ◽  
Author(s):  
Norasikin Saman ◽  
Khairiraihanna Johari ◽  
Shiow-Tien Song ◽  
Helen Kong ◽  
Siew-Chin Cheu ◽  
...  

2013 ◽  
Vol 699 ◽  
pp. 554-556 ◽  
Author(s):  
Zi Lin Meng ◽  
Yi He Zhang ◽  
Qi An ◽  
Feng Zhu Lv ◽  
Qian Zhang ◽  
...  

Bamboo charcoal (BC) as an environmentally friendly and low-cost material receives widespread attention. Recently, much attention has been focused on the use of BC as adsorbent to treat wastewater. This paper provides an overview of the adsorption of organic contaminants in solution by using BC. The sorption behaviors of BC with various organic pollutants, and the kinetic model adopted to explain the adsorption rate of organic pollutants from aqueous solution were also reviewed. The adsorption capacity, the isotherm model, and several key factors such as modification, surface area, are discussed in this paper. Possible improvement of BC to treat organic contaminants in aqueous solution is also proposed.


2013 ◽  
Vol 9 (1) ◽  
pp. 1822-1836
Author(s):  
Keon Sang Ryoo ◽  
Jong-Ha Choi ◽  
Yong Pyo Hong

The present study is to explore the possibility of utilizing granular activated charcoal (GAC) for the removal of total phosphorous (T-P) and total nitrogen (T-N) in aqueous solution. Batch adsorption studies were carried out to determine the influences of various factors like initial concentration, contact time and temperature. The adsorption data showed that GAC has a similar adsorption capacity for both T-N and T-P. The adsorption degree of T-N and T-P on GAC was highly concentration dependent. It was found that the adsorption capacity of GAC is quite favorable at a low concentration. At concentrations of 1.0 mg L-1 of T-P and 2.0 mg L-1 of T-N, approximately 97 % of adsorption was achieved by GAC. The equilibrium data were fitted well to the Langmuir isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher R2 compared with the pseudo-first-order and intra-particle kinetic model. The theoretical adsorption equilibrium qe,cal from pseudo-second-order kinetic model were relatively similar to the experimental adsorption equilibrium qe,exp. To evaluate the effect of thermodynamic parameters at different temperatures, the change in free energy ΔG, the enthalpy ΔH and the entropy ΔS were estimated. Except for adsorption of T-P at 278 K, the ΔG values obtained were all negative at the investigated temperatures. It indicates that the present adsorption system occurs spontaneously. The adsorption process of T-N by GAC was exothermic in nature, whereas T-P showed endothermic behavior. In addition, the positive values of ΔS imply that there was the increase in the randomness of adsorption of T-N and T-P at GAC-solution interface.  


2021 ◽  
Vol 16 (2) ◽  
pp. 436-443
Author(s):  
Sharmila Ramasamy ◽  
Anbarasu Kaliyaperumal ◽  
Thamilarasu Pommanaickar

Textile industries discharge wastewater containing various dyes including Crystal Violet dye. These dyes are very harmful for human beings, animals and plants. Therefore, the attempt is made for adsorption framework on elimination of crystal violet dye by using Cicca acida L. stem-activated carbon from aqueous solution carried out under various experimental methods and optimization conditions. Adsorption data modeled with Freundlich, Langmuir and Tempkin adsorption isotherms. Thermodynamic factors like as ∆Ho, ∆So and ∆Go were calculated, which indicated that the adsorption was spontaneous and endothermic nature. Based on kinetic study, pseudo-second order kinetic model was fit compared to the pseudo-first order kinetic model. The adsorbent has been characterized by SEM before and after adsorption of crystal violet dye solution.


Author(s):  
Yu.E. Romanenko ◽  
A.A. Merkin ◽  
O.V. Lefedova

The problem of kinetics of skeletal nickel samples saturation with hydrogen in an aqueous solution of 2-propanol of azeotropic composition was discussed. 2-propanol dehydrogenation and acetone hydrogenation rate constants were calculated. Kinetic model of processes under study was offered.


Sign in / Sign up

Export Citation Format

Share Document