scholarly journals In vitro Effects of Canine Wharton’s Jelly Mesenchymal Stromal Cells and Micellar Nanoparticles on Canine Osteosarcoma D17 Cell Viability

2012 ◽  
Vol 03 (05) ◽  
Author(s):  
Mary Lynn Higginbotham
2019 ◽  
Vol 15 (6) ◽  
pp. 900-918 ◽  
Author(s):  
Tiziana Corsello ◽  
Giandomenico Amico ◽  
Simona Corrao ◽  
Rita Anzalone ◽  
Francesca Timoneri ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Hataiwan Kunkanjanawan ◽  
Tanut Kunkanjanawan ◽  
Veerapol Khemarangsan ◽  
Rungrueang Yodsheewan ◽  
Kasem Theerakittayakorn ◽  
...  

Coimplantation of endothelial cells (ECs) and mesenchymal stromal cells (MSCs) into the transplantation site could be a feasible option to achieve a sufficient level of graft-host vascularization. To find a suitable source of tissue that provides a large number of high-quality ECs and MSCs suited for future clinical application, we developed a simplified xeno-free strategy for isolation of human umbilical vein endothelial cells (HUVECs) and Wharton’s jelly-derived mesenchymal stromal cells (WJ-MSCs) from the same umbilical cord. We also assessed whether the coculture of HUVECs and WJ-MSCs derived from the same umbilical cord (autogenic cell source) or from different umbilical cords (allogenic cell sources) had an impact on in vitro angiogenic capacity. We found that HUVECs grown in 5 ng/ml epidermal growth factor (EGF) supplemented xeno-free condition showed higher proliferation potential compared to other conditions. HUVECs and WJ-MSCs obtained from this technic show an endothelial lineage (CD31 and von Willebrand factor) and MSC (CD73, CD90, and CD105) immunophenotype characteristic with high purity, respectively. It was also found that only the coculture of HUVEC/WJ-MSC, but not HUVEC or WJ-MSC mono-culture, provides a positive effect on vessel-like structure (VLS) formation, in vitro. Further investigations are needed to clarify the pros and cons of using autogenic or allogenic source of EC/MSC in tissue engineering applications. To the best of our knowledge, this study offers a simple, but reliable, xeno-free strategy to establish ECs and MSCs from the same umbilical cord, a new opportunity to facilitate the development of personal cell-based therapy.


2015 ◽  
Vol 102 (3) ◽  
pp. 368-378 ◽  
Author(s):  
Haiping He ◽  
Tokiko Nagamura-Inoue ◽  
Atsuko Takahashi ◽  
Yuka Mori ◽  
Yuki Yamamoto ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
V. Tsymbaliuk ◽  
◽  
O. Deryabina ◽  
N. Shuvalova ◽  
S. Verbovska ◽  
...  

The urgent problem of long-term storage of multipotent mesenchymal stromal cells (MMSCs) is to improve the protocol of their cryopreservation for further application maintaining the therapeutic properties and minimizing the risks of adverse effects on the health of the recipient. As a standard cryoprotectant, a mixture of 90 % fetal bovine serum (FBS) and 10 % dimethyl sulfoxide (DMSO) is used, which, however, can cause a variety of adverse reactions. Therefore, it is important to study the possibility of reducing the concentration of potentially dangerous DMSO by adding other components to the mixture for cell cryopreservation. Purpose. To determine the efficiency of cryopreservation of human Wharton's jelly MMSCs using cryoprotectants of different composition by studying the proliferative activity, phenotype and features of cell morphology in culture in vitro. Materials and methods. The cryoprotective effect of various combinations of DMSO, ethylene glycol, sucrose and trehalose was studied. The efficacy was assessed by cell viability, their adhesive properties, expansion rate and monolayer formation, as well as the expression of main MMSCs markers. Results. It is shown that the most effective combination is 4 % DMSO with 6 % trehalose which provides the highest level of preservation of cell viability, as well as their adhesive and proliferative properties during thawing. Other combinations of the cryoprotectant components showed a much slower cell division, in some cases, the monolayer was not formed at all. For all investigated variants, the main surface markers of MMSCs were preserved. Conclusions. The obtained results indicate the possibility of reducing the concentration of DMSO to 4 % in the freezing medium for MMSCs cryopreservation while maintaining their viability, proliferative activity and common surface markers.


Placenta ◽  
2016 ◽  
pp. 91-128 ◽  
Author(s):  
Marta Magatti ◽  
Mohamed H. Abumaree ◽  
Antonietta R. Silini ◽  
Rita Anzalone ◽  
Salvatore Saieva ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Kevin Dzobo ◽  
Matjaz Vogelsang ◽  
Nicholas E. Thomford ◽  
Collet Dandara ◽  
Karlien Kallmeyer ◽  
...  

The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM). Mesenchymal stromal cells (MSCs) are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton’s Jelly-derived MSCs (WJ-MSCs) and a fibroblast-derived ECM (fd-ECM) on esophageal (WHCO1) and breast (MDA MB 231) cancer cellsin vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosisin vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells.


2021 ◽  
Vol 22 (4) ◽  
pp. 2045
Author(s):  
Cinzia Maria Chinnici ◽  
Gioacchin Iannolo ◽  
Ettore Cittadini ◽  
Anna Paola Carreca ◽  
David Nascari ◽  
...  

Despite low levels of vascular endothelial growth factor (VEGF)-A, the secretome of human Wharton’s jelly (WJ) mesenchymal stromal cells (MSCs) effectively promoted proangiogenic responses in vitro, which were impaired upon the depletion of small (~140 nm) extracellular vesicles (EVs). The isolated EVs shared the low VEGF-A profile of the secretome and expressed five microRNAs, which were upregulated compared to fetal dermal MSC-derived EVs. These upregulated microRNAs exclusively targeted the VEGF-A gene within 54 Gene Ontology (GO) biological processes, 18 of which are associated with angiogenesis. Moreover, 15 microRNAs of WJ-MSC-derived EVs were highly expressed (Ct value ≤ 26) and exclusively targeted the thrombospondin 1 (THBS1) gene within 75 GO biological processes, 30 of which are associated with the regulation of tissue repair. The relationship between predicted microRNA target genes and WJ-MSC-derived EVs was shown by treating human umbilical-vein endothelial cells (HUVECs) with appropriate doses of EVs. The exposure of HUVECs to EVs for 72 h significantly enhanced the release of VEGF-A and THBS1 protein expression compared to untreated control cells. Finally, WJ-MSC-derived EVs stimulated in vitro tube formation along with the migration and proliferation of HUVECs. Our findings can contribute to a better understanding of the molecular mechanisms underlying the proangiogenic responses induced by human umbilical cord-derived MSCs, suggesting a key regulatory role for microRNAs delivered by EVs.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Irene Carreras‐Sánchez ◽  
Alba López‐Fernández ◽  
Raquel Rojas‐Márquez ◽  
Roberto Vélez ◽  
Màrius Aguirre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document