Analyzing and mapping soil parameters as indicator of soil quality

2018 ◽  
Vol 06 ◽  
Author(s):  
Stefan Koco
Keyword(s):  
2020 ◽  
pp. 31-67
Author(s):  
V. S. Stolbovoy ◽  
A. M. Grebennikov

The study presents three groups of Soil Quality Indicators (SQI) of arable lands in the Russian Federation, such as agroclimate conditions, soil parameters and negative soil characteristics. The selection of SQI meets the requirements of the crop growth model for calculating the standard crop yield. The application of SQI in the Grain Equivalent Model allows ranking quality of the soils of agricultural lands in the country. The share of the best quality Chernozems with the standard yield of grain crops exceeding 4 t/ha is about 10%. At the same time, arable Chernozems occupy nearly 66% of total area of agricultural lands. More than 74% of the arable lands including podzolized and leached Chernozems in the northern part and Chernozems southern in the southern part of the agricultural zone are characterized by medium quality with the standard yield of grain crops 2-4 t/ha. About 10% of the arable land occupied by Chestnut solonetzic and saline soils are of poorer quality with the standard yield of grain crops less than 1 t/ha. The proposed indicators are included in the government programs for valuating and monitoring the quality of agricultural lands. The universal validity of indicators is a basis for the development of a new generation of standards for the protection and rational use of soils based on modern digital technologies and GIS approaches.


2021 ◽  
Vol 22 (3) ◽  
pp. 315-324
Author(s):  
Rajendiran S. Selladurai ◽  
Mohan Lal Dotaniya ◽  
M Vassanda Coumar ◽  
Samaresh Kundu ◽  
Nishant Kumar Sinha ◽  
...  

Soil quality degradation is a major threat to any agricultural production system. Therefore periodical monitoring of soil quality status is inevitable for sustainable management of agricultural production systems. Though there are various methods available to assess the soil quality, simple and management oriented methods are necessary. The current investigation aimed to evaluate soil quality of tribal areas of central India adopting minimum dataset of 15 soil physical, chemical and biological parameters. A novel scoring technique was followed to score soil quality indicators based on its relation with crop yield, degree of variation and percent deficiency. Relative soil quality index (RSQI) was calculated and was correlated with crop productivity. Most of the soils in the region had poor soil quality (77.2% in Jhabua, 85.4% in Alirajpur and 67.2% in Dhar) with low crop yield. The major constraints of crop production in these areas were low soil organic carbon (<0.5%), available N (<280 kg ha-1), S (<10 mg kg-1), P (<10 kg ha-1), Zn (<0.5 mg kg-1), dehydogenase activity (10 ?g TPF g-1 24 h-1) and soil depth (<1 m). Adopting sustainable management practices could improve soil quality and crop productivity. This new approach is simple and systematic; this principle can be easily adoptable to other locations, and principally focuses on management related and soil parameters that constraint to production and ecological functions.


2021 ◽  
Vol 9 (6) ◽  
pp. 881-893
Author(s):  
Mbark Lahmar ◽  
Najib El Khodrani ◽  
Serine Omrania ◽  
Houria Dakak ◽  
Ahmed Douaik ◽  
...  

The study of soil quality in irrigated areas is necessary to evaluate the sustainability of the agricultural production system. Indeed, the assessment of this quality is based on the physicochemical and biological characterization of soil parameters, as well as the knowledge of their spatial distribution and their evolution over time. This work aims to make a diagnosis of the current situation of soil quality of SidiYahya in the Gharb plain, Morocco. For this, sampling was carried out from 33 sites distributed over the studied plain during 2019. In this study, different soil properties including specifically texture, pH, electrical conductivity (EC), organic matter (OM), phosphorus (P2O5), and potassium (K2O) were measured while exchangeable sodium percentage (ESP) was calculated using the standard formula. Based on the observed soil properties a map was prepared by using a geographic information system (GIS), which was based specifically on the inverse distance weighted (IDW) spatial interpolation method. Data were processed using different statistical tools like descriptive statistics, correlation, and principal component analysis (PCA). Results of the study revealed that 70% of the soils have a heavy clayey texture with a predominance of vertisols (55%). Further, the study area soil is mainly alkaline (70%), poor in organic matter (61%) and phosphorus (52%), while very rich in potassium (70%), and non-saline (88%) contents. Soil pH was reported to be the least variable whereas sand, phosphorus, and salinity were the highest variable. IDW allowed mapping the soil properties by moving from punctual information to whole extent information. Furthermore, correlations were found between various soil properties by using PCA, 3 principal components (PCs) were able to extract 76% of the information from the 9 initial soil properties. Collected soil samples were grouped into 3 groups, based on their scores on the 3 PCs. Based on these two kinds of information, delineation of management zones can be established for a site-specific supply of agricultural inputs leading to better management of soil and water resources for securing their sustainable use.


1996 ◽  
Vol 21 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Jonathan J. Halvorson ◽  
Jeffrey L. Smith ◽  
Robert I. Papendick
Keyword(s):  

Author(s):  
Maximilian Meyer ◽  
Dörte Diehl ◽  
Gabriele Ellen Schaumann ◽  
Katherine Muñoz

AbstractPlastic and straw coverage (PC and SC) are often combined with fungicide application but their influence on fungicide entry into soil and the resulting consequences for soil quality are still unknown. The objective of this study was to investigate the impact of PC and SC, combined with fungicide application, on soil residual concentrations of fungicides (fenhexamid, cyprodinil, and fludioxonil), soil fungal biomass, mycotoxin occurrence, and soil organic matter (SOM) decomposition, depending on soil depth (0–10, 10–30, 30–60 cm) and time (1 month prior to fungicide application and respectively 1 week, 5 weeks, and 4 months afterwards). Soil analyses comprised fungicides, fusarium mycotoxins (deoxynivalenol, 15-acetyldeoxynivalenol, nivalenol, and zearalenone), ergosterol, soil microbial carbon and nitrogen, soil organic carbon, dissolved organic carbon, and pH. Fludioxonil and cyprodinil concentrations were higher under SC than under PC 1 week and 5 weeks after fungicide application (up to three times in the topsoil) but no differences were observed anymore after 4 months. Fenhexamid was not detected, presumably because of its fast dissipation in soil. The higher fludioxonil and cyprodinil concentrations under SC strongly reduced the fungal biomass and shifted microbial community towards larger bacterial fraction in the topsoil and enhanced the abundance and concentration of deoxynivalenol and 15-acetyldeoxynivalenol 5 weeks after fungicide application. Independent from the different fungicide concentrations, the decomposition of SOM was temporarily reduced after fungicide application under both coverage types. However, although PC and SC caused different concentrations of fungicide residues in soil, their impact on the investigated soil parameters was minor and transient (< 4 months) and hence not critical for soil quality.


2020 ◽  
Vol 21 (3) ◽  
pp. 155-164
Author(s):  
Sweta Bhardwaj ◽  
D.R. Khanna ◽  
Mukesh Ruhela ◽  
Rakesh Bhutiani ◽  
Rahul Bhardwaj ◽  
...  

The present study aims to compare the quality of soil of different region of Haridwar with reference to physicochemical and heavy metal parameters. To fulfill the objectives of present study, soil sampling was performed in forest (control site), industrial, residential and agricultural areas in and around Haridwar. Soil samples were analyzed for different physicochemical and heavy metal parameters.  Values of all the studied soil parameters were found highest (an increase of 32% in temperature (16.63 to 21.640C), 121% in soil moisture (13.05 to 28.39%), 29.02% in soil porosity (37.56 to 49.03%), and 19.6% in the water holding capacity (36.22 to 43.58%), 74.18% in conductivity (0.25 to 0.40 µMhos/cm), and 203.78% in chloride (16.67 to 53.97mg/gm)) at the industrial area in comparison to other sites. During the course of the study, an increasing trend in all the parameters at all the sites was observed this may be due to the dumping of industrial solid waste and effluent. Although no negative impact was observed on the soil quality but continuous dumping will results in harmful impacts due to the accumulation of pollutants. Therefore there is a need for safe and proper disposal and utilization techniques to manage the enormous quantity of industrial waste. All the heavy metals (such as copper (0.050 to 0.055mg/gm), manganese (0.232 to 0.242mg/gm), nickel (0.035 to 0.036mg/gm), lead (0.039mg/gm), and iron (1.19 to 1.22) were found in higher concentration during the study period while cadmium was found absent during the study period.


2021 ◽  
Vol 14 (1-2) ◽  
pp. 47-57
Author(s):  
Samdandorj Manaljav ◽  
Andrea Farsang ◽  
Károly Barta ◽  
Zalán Tobak ◽  
Szabolcs Juhász ◽  
...  

Abstract Soil erosion is a main problem in sloping vineyards, which can dramatically affect soil quality and fertility. The present study aimed to evaluate the spatial patterns of selected physico-chemical soil characteristics and the soil’s potentially toxic element (PTE) contents in the context of erosion. The study was conducted in a 0.4 ha vineyard plot on a steep slope in Tállya, part of the wine-growing region of Tokaj-Hegyalja (Hungary). A total of 20 topsoil samples (0-10 cm) were collected and analysed for PTEs (B, Co, Ba, Sr, Mn, Ni, Cr, Pb, Zn, and Cu), soil pH (deionized water and KCl solution), particle-size distribution, soil organic matter (SOM), (nitrate+nitrite)-N, P2O5, and carbonate content. Among the selected PTEs, only Cu (125±27 mg/kg) exceeds the Hungarian standards set for soils and sediments (75 mg/kg) due to the long-term use of Cu-based pesticides in the vineyard. Examined PTEs are negatively correlated with the sand content of the topsoil, except for Mn, while the significant positive relationship with the clay content shows the role of clay in retaining PTEs in soil. SOM seems to play a minor role in binding PTEs, as Cu is the only element for which a significant correlation with the SOM content can be detected. The spatial distribution maps prepared by inverse distance weighting (IDW) and lognormal kriging (LK) methods show higher PTE contents at the summit and the shoulder of the hillslope and lower contents at the backslope and the footslope zones. The low slope gradients (0-5 degree) and the high contents of the coarse fraction (> 35%) likely protect the soil at the summit and the hillslope’s shoulder from excessive erosion-induced losses. While the reraising PTE contents at the toeslope are likely due to the deposition of fine soil particles (silt and clay). The highest SOM contents at the summit and the toeslope areas, and increased contents of the coarse fraction at the backslope, confirm the effects of soil erosion on the spatial distribution patterns of main soil quality indicators. Overall, the LK outperformed the IDW method in predicting the soil parameters in unsampled areas.


2020 ◽  
Vol 15 (3) ◽  
pp. 502-514
Author(s):  
Lingayya Raghavendra ◽  
Melally Giddegowda Venkatesha

To assess water and soil quality in the Western Ghats' coffee plantations, 66 water and 224 soil samples were collected at four locations for estimation 20 parameters in water and 16 parameters in soil samples. Principal component analysis as applied to a set of chemical data obtained by the laboratory analysis of water and soil. Study locations represented arabica coffee (Coffea arabica) plantations around 50 km2 from Chikkamagaluru town. PCA showed the interrelationship of water and soil parameters for four sampling locations. The clustering of sampling location results was due to the consequence and concentration of water and soil variables. The principal component bi-plot of phosphorous, conductivity, hardness, total dissolved solids, sulphate, magnesium, and alkalinity determined water quality factors. Heavy metals, nitrogen, and total phosphorous greatly influenced the quality of soil samples at different locations.


2019 ◽  
Vol 33 (2) ◽  
pp. 1-14
Author(s):  
Mahendra Singh Thapa ◽  
Thakur Bhattarai ◽  
Ram Prasad Sharma ◽  
Baburam K. C ◽  
Lila Puri

Physiochemical parameters of soil under Shorearobusta forest was estimated to evaluate the soil fertility status and soil quality index in different altitudes of community managed forest of Khairani Municipality Chitwan district Nepal. Altogether 75 soil samples were collected from the forest area at five different depths. Sandy clay loam and sandy loam texture was found in surface and subsurface layer respectively. The mean soil pH of altitudinal strata was 5.57 which is moderately acidic and showed decreasing trend with increasing soil depths. Average bulk density ranged from 1.14 to 1.30 in all attitudes. Organic carbon varied from 0.30 to 1.30% and organic matter ranges from 0.52 to 2.23%. The amount of mean available phosphorus seem low to medium rating in these forest strata. Mean exchangeable potassium varied from 61.89 mg kg-1 to 96.02 mg kg-1 in different altitudes. Most of these soil attributes decreased with the increasing depth. Pearson correlation analysis among the different soil parameters were showed statistically significant at the 0.01 level (2 – tailed) and 0.05 levels (2 - tailed).One way ANOVA of the studied soil parameters in different altitudes observed that they were statistically significant at 0.05 level (p ≤ 0.05). The overall soil fertility status of the Kankali Community Forest is low to medium. An average SQI was found 0.55 (fair) up to 120 cm depths,slightly decreased with increasing soil depths. Regulation of Leaf litter collection and adoption of appropriate silvicultural operation may help to increase the fertility status and site quality of Kankali community forest.


2015 ◽  
Vol 7 (1) ◽  
pp. 617-638 ◽  
Author(s):  
R. E. Masto ◽  
S. Sheik ◽  
G. Nehru ◽  
V. A. Selvi ◽  
J. George ◽  
...  

Abstract. Assessment of soil quality is one of the key parameters for evaluation of environmental contamination in the mining ecosystem. To investigate the effect of coal mining on soil quality, opencast and underground mining sites were selected in the Raniganj Coafield area, India. The physical, chemical, biological parameters, heavy metals, and PAHs contents of the soils were evaluated. Soil dehydrogenase (+79%) and fluorescein (+32%) activities were significantly higher in underground mine (UGM) soil, whereas peroxidase activity (+57%) was higher in opencast mine (OCM) soil. Content of As, Be, Co, Cr, Cu, Mn, Ni, and Pb was significantly higher in OCM soil, whereas, Cd was higher in UGM. In general, the PAHs contents were higher in UGM soils probably due to the natural coal burning in these sites. The observed values for the above properties were converted into a unit less score (0–1.00) and the scores were integrated into environmental soil quality index (ESQI). In the unscreened index (ESQI-1) all the soil parameters were included and the results showed that the quality of the soil was better for UGM (0.539) than the OCM (0.511) soils. Principal component analysis was employed to derive ESQI-2 and accordingly, total PAHs, loss on ignition, bulk density, Be, Co, Cr, Ni, Pb, and microbial quotient (respiration: microbial biomass ratio) were found to be the most critical properties. The ESQI-2 was also higher for soils near UGM (+10.1%). The proposed ESQI may be employed to monitor soil quality changes due to anthropogenic interventions.


Sign in / Sign up

Export Citation Format

Share Document