Pharmaceutical and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells

Author(s):  
Heidari A
2018 ◽  
Vol 6 (2) ◽  
pp. 140 ◽  
Author(s):  
Alireza Heidari

In this work, the effect of temperature of the ablation environment on the properties of Cadmium Oxide (CdO) nanoparticles produced by synchrotron radiation is investigated. To produce nanoparticles, synchrotron radiation pulse with 1064 (nm) wavelength is used to emit Cadmium in the human cancer cells, tissues and tumors. All test parameters were kept constant and human cancer cells, tissues and tumors temperature was changed to produce samples at 20°C and 65°C. Then, ATR–FTIR, XRD, TEM and UV–Visible spectroscopy analyses were performed to investigate their properties. The results show that the size of nanoparticles is increased by increase in temperature of ablation environment. In addition, in the current experimental research, Gold (Au)–Cadmium Oxide (CdO) alloy is created at the size of nano. In this regard, same volume of Gold and Cadmium Oxide (CdO) solutions were mixed together and emitted by the synchrotron radiation pulse with wavelength of 532 (nm). The Gold and Cadmium Oxide (CdO) solutions have been produced, separately, using synchrotron radiation ablation process. To produce them, synchrotron radiation pulse with wavelength of 1064 (nm) and pulse width of 7 (ns) and repeating frequency of 5 (Hz) was used. The results show that synchrotron radiation emission with wavelength of 532 (nm) is an appropriate method for producing Gold compounds in the size of nano.  


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 278 ◽  
Author(s):  
Bu Choi

Apple is a rich source of bioactive phytochemicals that help improve health by preventing and/or curing many disease processes, including cancer. One of the apple polyphenols is phloretin [2′,4′,6′-Trihydroxy-3-(4-hydroxyphenyl)-propiophenone], which has been widely investigated for its antioxidant, anti-inflammatory and anti-cancer activities in a wide array of preclinical studies. The efficacy of phloretin in suppressing xenograft tumor growth in athymic nude mice implanted with a variety of human cancer cells, and the ability of the compound to interfere with cancer cells signaling, have made it a promising candidate for anti-cancer drug development. Mechanistically, phloretin has been reported to arrest the growth of tumor cells by blocking cyclins and cyclin-dependent kinases and induce apoptosis by activating mitochondria-mediated cell death. The blockade of the glycolytic pathway via downregulation of GLUT2 mRNA and proteins, and the inhibition of tumor cells migration, also corroborates the anti-cancer effects of phloretin. This review sheds light on the molecular targets of phloretin as a potential anti-cancer and anti-inflammatory natural agent.


1981 ◽  
Vol 101 (3) ◽  
pp. 227-231 ◽  
Author(s):  
JUNICHI ISOMURA ◽  
KENTARO YOSHIMATSU ◽  
TOMOHISA IKEDA ◽  
GIICHI TAKIMOTO ◽  
TOMIAKI MORIMOTO

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chia-Jung Li ◽  
Shih-Fang Tsang ◽  
Chun-Hao Tsai ◽  
Hsin-Yi Tsai ◽  
Jong-Ho Chyuan ◽  
...  

Plants are an invaluable source of potential new anti-cancer drugs.Momordica charantiais one of these plants with both edible and medical value and reported to exhibit anticancer activity. To explore the potential effectiveness ofMomordica charantia, methanol extract ofMomordica charantia(MCME) was used to evaluate the cytotoxic activity on four human cancer cell lines, Hone-1 nasopharyngeal carcinoma cells, AGS gastric adenocarcinoma cells, HCT-116 colorectal carcinoma cells, and CL1-0 lung adenocarcinoma cells, in this study. MCME showed cytotoxic activity towards all cancer cells tested, with the approximate IC50ranging from 0.25 to 0.35 mg/mL at 24 h. MCME induced cell death was found to be time-dependent in these cells. Apoptosis was demonstrated by DAPI staining and DNA fragmentation analysis using agarose gel electrophoresis. MCME activated caspase-3 and enhanced the cleavage of downstream DFF45 and PARP, subsequently leading to DNA fragmentation and nuclear condensation. The apoptogenic protein, Bax, was increased, whereas Bcl-2 was decreased after treating for 24 h in all cancer cells, indicating the involvement of mitochondrial pathway in MCME-induced cell death. These findings indicate that MCME has cytotoxic effects on human cancer cells and exhibits promising anti-cancer activity by triggering apoptosis through the regulation of caspases and mitochondria.


2016 ◽  
Vol 26 (9) ◽  
pp. 2164-2169 ◽  
Author(s):  
Nikhil R. Madadi ◽  
Amit Ketkar ◽  
Narsimha R. Penthala ◽  
April C.L. Bostian ◽  
Robert L. Eoff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document