scholarly journals Effects of handedness on olfactory event-related potentials in a simple olfactory task

2015 ◽  
Vol 53 (2) ◽  
pp. 149-153
Author(s):  
Marie Gottschlich ◽  
Thomas Hummel

The purpose of the present study was to re-investigate the influence of handedness on simple olfactory tasks to further clarify the role of handedness in chemical senses. Similar to language and other sensory systems, effects of handedness should be expected. Young, healthy subjects participated in this study, including 24 left-handers and 24 right-handers, with no indication of any major nasal or health problems. The two groups did not differ in terms of sex and age (14 women and 10 men in each group). They had a mean age of 24.0 years. Olfactory event-related potentials were recorded after left or right olfactory stimulation with the rose-like odor phenyl ethyl alcohol (PEA) or the smell of rotten eggs (hydrogen sulfide, H2S). Results suggested that handedness has no major influence on amplitude or latency of olfactory event-related potentials when it comes to simple olfactory tasks.

Author(s):  
Slobodan Savovic ◽  
Vladimir Pilija ◽  
Slobodanka Lemajic ◽  
Maja Buljcik ◽  
Dejan Nincic ◽  
...  

The sense of smell is the least examined of all senses. The significance of the organs of smell is in their influence on the mental state as well as on the vegetative, visceral and sexual functions. The objective of this experiment was to define the influence of sex on the olfactory function. It was performed on 120 subjects (60 females and 60 males) divided into three age groups (20 - 30; 31 - 40; 41 - 50 years of age). The experiment was carried out by the Fortunato-Niccolini olfactometric method using six odorous experimental substances: A - anethol, PH - phenyl-ethyl-alcohol, C citral, M - menthol, V- vanillin and P - pyridine, the thresholds of perception (TP) and identification (TI) being defined for each odorous substance. The examined females had slightly lower thresholds of perception (TP) and identification (TI) in relation to the males of the same age group. However, the differences were not statistically significant except for the group of subjects between 41 and 50 years of age where the females, being in the pre-menopause, had significantly better olfactory functions. The results can be explained by the weakening of the olfactory power as a result of ageing in both sexes, however, the females still experienced the protective role of sex hormones.


2007 ◽  
Vol 40 (05) ◽  
Author(s):  
AH Neuhaus ◽  
TE Goldberg ◽  
Y Hassoun ◽  
JA Bates ◽  
KW Nassauer ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Irina Chamine ◽  
Barry S. Oken

Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions.Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress.Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude.Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.


2014 ◽  
Vol 19 (1) ◽  
pp. 1-18 ◽  
Author(s):  
EDITH KAAN ◽  
JOSEPH KIRKHAM ◽  
FRANK WIJNEN

According to recent views of L2-sentence processing, L2-speakers do not predict upcoming information to the same extent as do native speakers. To investigate L2-speakers’ predictive use and integration of syntactic information across clauses, we recorded event-related potentials (ERPs) from advanced L2-learners and native speakers while they read sentences in which the syntactic context did or did not allow noun-ellipsis (Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain and Language, 98, 74–88.) Both native and L2-speakers were sensitive to the context when integrating words after the potential ellipsis-site. However, native, but not L2-speakers, anticipated the ellipsis, as suggested by an ERP difference between elliptical and non-elliptical contexts preceding the potential ellipsis-site. In addition, L2-learners displayed a late frontal negativity for ungrammaticalities, suggesting differences in repair strategies or resources compared with native speakers.


2019 ◽  
Author(s):  
Rodika Sokoliuk ◽  
Sara Calzolari ◽  
Damian Cruse

AbstractThe notion of semantic embodiment posits that concepts are represented in the same neural sensorimotor systems that were involved in their acquisition. However, evidence in support of embodied semantics – in particular the hypothesised contribution of motor and premotor cortex to the representation of action concepts – is varied. Here, we tested the hypothesis that, consistent with semantic embodiment, sensorimotor cortices will rapidly become active while healthy participants access the meaning of visually-presented motor and non-motor action verbs. Event-related potentials revealed early differential processing of motor and non-motor verbs (164-203ms) within distinct regions of cortex likely reflecting rapid cortical activation of differentially distributed semantic representations. However, we found no evidence for a specific role of sensorimotor cortices in supporting these representations. Moreover, we observed a later modulation of the alpha band (8-12Hz) from 555-785ms over central electrodes, with estimated generators within the left superior parietal lobule, which may reflect post-lexical activation of the object-directed features of the motor action concepts. In conclusion, we find no evidence for a specific role of sensorimotor cortices when healthy participants judge the meaning of visually-presented action verbs. However, the relative contribution of sensorimotor cortices to action comprehension may vary as a function of task goals.


2021 ◽  
Vol 11 (23) ◽  
pp. 11252
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

Classification of brain signal features is a crucial process for any brain–computer interface (BCI) device, including speller systems. The positive P300 component of visual event-related potentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the necessity for the users to train the speller themselves, which is a very time-consuming procedure. To achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical machine learning models, such as the support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed voters were trained on healthy subjects’ data using a generic training approach. Different combinations of electroencephalography (EEG) channels were used for the experiments presented, resulting in single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four active EEG channels data in the occipital area of the brain. The results provided by the proposed ensemble voting models were on average about 5% more accurate than the results provided by the standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in terms of computational complexity or accuracy. The proposed methodology shows the ability to be subject-independent, which means that the system trained on healthy subjects can be efficiently used for ALS patients. Applying this methodology for online speller systems removes the necessity to retrain the P300 speller.


2007 ◽  
Vol 100 (3) ◽  
pp. 223-237 ◽  
Author(s):  
Gina R. Kuperberg ◽  
Donna A. Kreher ◽  
Tatiana Sitnikova ◽  
David N. Caplan ◽  
Phillip J. Holcomb

Sign in / Sign up

Export Citation Format

Share Document