Bridge Vibration Suppression using Semi Active Vibration Absorbers (SAVA)

Author(s):  
W.N. Patten ◽  
Q. He ◽  
J. Hu ◽  
R.L. Sack
Author(s):  
Jiaqi Zhong ◽  
Xiaolei Chen ◽  
Yupeng Yuan ◽  
Jiajia Tan

This paper addresses the problem of active vibration suppression for a class of Euler-Bernoulli beam system. The objective of this paper is to design a hybrid temporal-spatial differential controller, which is involved with the in-domain and boundary actuators, such that the closed-loop system is stable. The Lyapunov’s direct method is employed to derive the sufficient condition, which not only can guarantee the stabilization of system, but also can improve the spatial cooperation of actuators. In the framework of the linear matrix inequalities (LMIs) technology, the gain matrices of hybrid controller can obtained by developing a recursive algorithm. Finally, the effectiveness of the proposed methodology is demonstrated by applying a numerical simulation.


2016 ◽  
Vol 24 (6) ◽  
pp. 1086-1100
Author(s):  
Utku Boz ◽  
Ipek Basdogan

In adaptive control applications for noise and vibration, finite ımpulse response (FIR) or ınfinite ımpulse response (IIR) filter structures are used for online adaptation of the controller parameters. IIR filters offer the advantage of representing dynamics of the controller with smaller number of filter parameters than with FIR filters. However, the possibility of instability and convergence to suboptimal solutions are the main drawbacks of such controllers. An IIR filtering-based Steiglitz–McBride (SM) algorithm offers nearly-optimal solutions. However, real-time implementation of the SM algorithm has never been explored and application of the algorithm is limited to numerical studies for active vibration control. Furthermore, the prefiltering procedure of the SM increases the computational complexity of the algorithm in comparison to other IIR filtering-based algorithms. Based on the lack of studies about the SM in the literature, an SM time-domain algorithm for AVC was implemented both numerically and experimentally in this study. A methodology that integrates frequency domain IIR filtering techniques with the classic SM time-domain algorithm is proposed to decrease the computational complexity. Results of the proposed approach are compared with the classical SM algorithm. Both SM and the proposed approach offer multimodal vibration suppression and it is possible to predict the performance of the controller via simulations. The proposed hybrid approach ensures similar vibration suppression performance compared to the classical SM and offers computational advantage as the number of control filter parameters increases.


Author(s):  
Nejat Olgac ◽  
Martin Hosek

Abstract A novel active vibration absorption technique, the Delayed Resonator, has been introduced recently as a unique way of suppressing undesired oscillations. It suggests a control force on a mass-spring-damper absorber in the form of a proportional position feedback with a time delay. Its strengths consist of extremely simple implementation of the control algorithm, total vibration suppression of the primary structure against a harmonic force excitation and full effectiveness of the absorber in a semi-infinite range of disturbance frequency, achieved by real-time tuning. All this development work was done using the absolute displacements of the absorber in the feedback. These displacement measurements may be difficult to obtain and for some applications impossible. This paper deals with a substitute and easier measurement: the relative motion of the absorber with respect to the primary structure. Theoretical foundations for the Delayed Resonator (DR) are briefly recapitulated and its implementation on a single-degree-of-freedom primary structure disturbed by a harmonic force is introduced utilizing both absolute and relative position measurement of absorber mass. Methods for stability range analysis and transient behavior are presented. Properties acquired for the same system with these two different feedback are compared. Relative position measurement case is found to be more advantageous in most applications of the Delayed Resonator method.


2021 ◽  
Author(s):  
Junjie Dai ◽  
Chin-Yin Chen ◽  
Renfeng Zhu ◽  
Guilin Yang ◽  
Chongchong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document