Dynamic Analysis of Three-Dimensional Composite Beam Elements Including Warping and Shear Deformation Effects

Author(s):  
E.J. Sapountzakis ◽  
V.G. Mokos
Author(s):  
A. L. Schwab ◽  
J. P. Meijaard

Three formulations for a flexible spatial beam element for dynamic analysis are compared: a Timoshenko beam with large displacements and rotations, a fully parametrized element according to the absolute nodal coordinate formulation (ANCF), and an ANCF element based on an elastic line approach. In the last formulation, the shear locking of the antisymmetric bending mode is avoided by the application of either the two-field Hellinger–Reissner or the three-field Hu–Washizu variational principle. The comparison is made by means of linear static deflection and eigenfrequency analyses on stylized problems. It is shown that the ANCF fully parametrized element yields too large torsional and flexural rigidities, and shear locking effectively suppresses the antisymmetric bending mode. The presented ANCF formulation with the elastic line approach resolves most of these problems.


Author(s):  
Yifan Li ◽  
Huaiyuan Gu ◽  
Martyn Pavier ◽  
Harry Coules

Octet-truss lattice structures can be used for lightweight structural applications due to their high strength-to-density ratio. In this research, octet-truss lattice specimens were fabricated by stereolithography additive manufacturing with a photopolymer resin. The mechanical properties of this structure have been examined in three orthogonal orientations under the compressive load. Detailed comparison and description were carried out on deformation mechanisms and failure modes in different lattice orientations. Finite element models using both beam elements and three-dimensional solid elements were used to simulate the compressive response of this structure. Both the load reaction and collapse modes obtained in simulations were compared with test results. Our results indicate that three-dimensional continuum element models are required to accurately capture the behaviour of real trusses, taking into account the effects of finite-sized beams and joints.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2020 ◽  
Vol 149 ◽  
pp. 103825 ◽  
Author(s):  
Filipe Marques ◽  
Hugo Magalhães ◽  
João Pombo ◽  
Jorge Ambrósio ◽  
Paulo Flores

1987 ◽  
Vol 31 (02) ◽  
pp. 101-106
Author(s):  
Kyu Nam Cho ◽  
William S. Vorus

A new three-dimensional method is proposed for analyzing orthogonally stiffened grillage structures. The method is based on earlier work related to bridge decks. The relationship between system displacement and loads is described mathematically, and matrices are developed to examine the shear compatibility between plate and beam elements. The paper concludes with a comparison between deflections obtained by several different procedures and the proposed model.


Author(s):  
A Meghdari ◽  
R Davoodi ◽  
F Mesbah

This paper presents an engineering analysis of shoulder dystocia (SD) in the human birth process which usually results in damaging the brachial plexus nerves and the humerus and/or clavicle bones of the baby. The goal is to study these injuries from the mechanical engineering point of view. Two separate finite element models of the neonatal neck and the clavicle bone have been simulated using eight-node three-dimensional elements and beam elements respectively. Simulated models have been analysed under suitable boundary conditions using the ‘SAP80’ finite element package. Finally, results obtained have been verified by comparing them with published clinical and experimental observations.


1996 ◽  
Vol 11 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Alphose Zingoni

Where a finite element possesses symmetry properties, derivation of fundamental element matrices can be achieved more efficiently by decomposing the general displacement field into subspaces of the symmetry group describing the configuration of the element. In this paper, the procedure is illustrated by reference to the simple truss and beam elements, whose well-known consistent-mass matrices are obtained via the proposed method. However, the procedure is applicable to all one-, two- and three-dimensional finite elements, as long as the shape and node configuration of the element can be described by a specific symmetry group.


Sign in / Sign up

Export Citation Format

Share Document