Use of Shifted Laplacian Operators for Solving Indefinite Helmholtz Equations

2015 ◽  
Vol 8 (1) ◽  
pp. 136-148 ◽  
Author(s):  
Ira Livshits

AbstractA shifted Laplacian operator is obtained from the Helmholtz operator by adding a complex damping. It serves as a basic tool in the most successful multigrid approach for solving highly indefinite Helmholtz equations — a Shifted Laplacian preconditioner for Krylov-type methods. Such preconditioning significantly accelerates Krylov iterations, much more so than the multigrid based on original Helmholtz equations. In this paper, we compare approximation and relaxation properties of the Helmholtz operator with and without the complex shift, and, based on our observations, propose a new hybrid approach that combines the two. Our analytical conclusions are supported by two-dimensional numerical results.

2021 ◽  
Vol 136 (3) ◽  
pp. 791-812
Author(s):  
Peder A. Tyvand ◽  
Jonas Kristiansen Nøland

AbstractThe onset of thermal convection in two-dimensional porous cavities heated from below is studied theoretically. An open (constant-pressure) boundary is assumed, with zero perturbation temperature (thermally conducting). The resulting eigenvalue problem is a full fourth-order problem without degeneracies. Numerical results are presented for rectangular and elliptical cavities, with the circle as a special case. The analytical solution for an upright rectangle confirms the numerical results. Streamlines penetrating the open cavities are plotted, together with the isotherms for the associated closed thermal cells. Isobars forming pressure cells are depicted for the perturbation pressure. The critical Rayleigh number is calculated as a function of geometric parameters, including the tilt angle of the rectangle and ellipse. An improved physical scaling of the Darcy–Bénard problem is suggested. Its significance is indicated by the ratio of maximal vertical velocity to maximal temperature perturbation.


2001 ◽  
Vol 123 (4) ◽  
pp. 811-818 ◽  
Author(s):  
Jun Ishimoto ◽  
Mamoru Oike ◽  
Kenjiro Kamijo

The two-dimensional characteristics of the vapor-liquid two-phase flow of liquid helium in a pipe are numerically investigated to realize the further development and high performance of new cryogenic engineering applications. First, the governing equations of the two-phase flow of liquid helium based on the unsteady thermal nonequilibrium multi-fluid model are presented and several flow characteristics are numerically calculated, taking into account the effect of superfluidity. Based on the numerical results, the two-dimensional structure of the two-phase flow of liquid helium is shown in detail, and it is also found that the phase transition of the normal fluid to the superfluid and the generation of superfluid counterflow against normal fluid flow are conspicuous in the large gas phase volume fraction region where the liquid to gas phase change actively occurs. Furthermore, it is clarified that the mechanism of the He I to He II phase transition caused by the temperature decrease is due to the deprivation of latent heat for vaporization from the liquid phase. According to these theoretical results, the fundamental characteristics of the cryogenic two-phase flow are predicted. The numerical results obtained should contribute to the realization of advanced cryogenic industrial applications.


1995 ◽  
Vol 09 (01) ◽  
pp. 55-66
Author(s):  
YOUYAN LIU ◽  
WICHIT SRITRAKOOL ◽  
XIUJUN FU

We have analytically obtained the occupation probabilities on subbands of the hierarchical energy spectrum and the step heights of the integrated density of states for two-dimensional Fibonacci quasilattices. Based on the above results, the gap-labeling properties of the energy spectrum are found, which claim that the step height is equal to {mτ}, where the braces denote the fractional part, and m is an integer that can be used to label the corresponding energy gap. Numerical results confirm these results very well.


1984 ◽  
Vol 28 (01) ◽  
pp. 70-75
Author(s):  
C. C. Hsu

Simple wall correction rules for two-dimensional and nearly two-dimensional cavity flows in closed or free jet water tunnels, based on existing linearized analyses, are made. Numerical results calculated from these expressions are compared with existing experimental findings. The present theoretical predictions are, in general, in good agreement with data.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


2020 ◽  
Vol 25 (4) ◽  
pp. 531-545
Author(s):  
Amir Hossein Salehi Shayegan ◽  
Ali Zakeri ◽  
Seyed Mohammad Hosseini

This article considers a nonlinear system of elliptic problems, which is obtained by discretizing the time variable of a two-dimensional nonlinear parabolic problem. Since the system consists of ill-conditioned problems, therefore a stabilized, mesh-free method is proposed. The method is based on coupling the preconditioned Sobolev space gradient method and WEB-spline finite element method with Helmholtz operator as a preconditioner. The convergence and error analysis of the method are given. Finally, a numerical example is solved by this preconditioner to show the efficiency and accuracy of the proposed methods.


Geophysics ◽  
2021 ◽  
pp. 1-40
Author(s):  
Wenhao Xu ◽  
Yang Zhong ◽  
Bangyu Wu ◽  
Jinghuai Gao ◽  
Qing Huo Liu

Solving the Helmholtz equation has important applications in various areas, such as acoustics and electromagnetics. Using an iterative solver together with a proper preconditioner is key for solving large 3D Helmholtz equations. The performance of existing Helmholtz preconditioners usually deteriorates when the minimum spatial sampling density is small (approximately four points per wavelength [PPW]). To improve the efficiency of the Helmholtz preconditioner at a small minimum spatial sampling density, we have adopted a new preconditioner. In our scheme, the preconditioning matrix is constructed based on an adaptive complex frequency that varies with the minimum spatial sampling density in terms of the number of PPWs. Furthermore, the multigrid V-cycle with a GMRES smoother is adopted to effectively solve the corresponding preconditioning linear system. The adaptive complex frequency together with a GMRES smoother can work stably and efficiently at different minimum spatial sampling densities. Numerical results of three typical 3D models show that our scheme is more efficient than the multilevel GMRES method and shifted Laplacian with multigrid full V-cycle and a symmetric Gauss-Seidel smoother for preconditioning the 3D Helmholtz linear system, especially when the minimum spatial sampling density is large (approximately 120 PPW) or small (approximately 4 PPW).


Author(s):  
S. Sorella ◽  
S. Baroni ◽  
R. Car ◽  
M. Parrinello ◽  
A. Parola ◽  
...  

Author(s):  
Hamza Gharsellaoui ◽  
Hamadi Hasni

The paper deals with the purpose of one hybrid approach for solving the constrained two-dimensional cutting (2DC) problem. The authors study this hybrid approach that combines the genetic algorithm and the Tabu search method. For this problem, they assume a packing of a whole number of rectangular pieces to cut, and that all cuts are of guillotine type in one sheet of a fixed width and an infinite height. Finally, they undertake an extensive experimental study with a large number of problem instances extracted from the literature by the Hopper’s benchmarks in order to support and to prove their approach and to evaluate the performance.


Sign in / Sign up

Export Citation Format

Share Document