scholarly journals Particle Growth and Variation of Cloud Condensation Nucleus Activity on Polluted Days with New Particle Formation: A Case Study for Regional Air Pollution in the PRD Region, China

2016 ◽  
Vol 16 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Dingli Yue ◽  
Liuju Zhong ◽  
Tao Zhang ◽  
Jin Shen ◽  
Luan Yuan ◽  
...  
2019 ◽  
Vol 19 (1) ◽  
pp. 115-138 ◽  
Author(s):  
Biwu Chu ◽  
Veli-Matti Kerminen ◽  
Federico Bianchi ◽  
Chao Yan ◽  
Tuukka Petäjä ◽  
...  

Abstract. New particle formation (NPF) studies in China were summarized comprehensively in this paper. NPF frequency, formation rate, and particle growth rate were closely compared among the observations carried out at different types of sites in different regions of China in different seasons, with the aim of exploring the nucleation and particle growth mechanisms. The interactions between air pollution and NPF are discussed, emphasizing the properties of NPF under heavy pollution conditions. The current understanding of NPF cannot fully explain the frequent occurrence of NPF at high aerosol loadings in China, and possible reasons for this phenomenon are proposed. The effects of NPF and some aspects of NPF research requiring further investigation are also summarized in this paper.


2018 ◽  
Author(s):  
Biwu Chu ◽  
Veli-Matti Kerminen ◽  
Federico Bianchi ◽  
Chao Yan ◽  
Tuukka Petäjä ◽  
...  

Abstract. New particle formation (NPF) studies in China were summarized comprehensively in this paper. NPF frequency, formation rate and particle growth rate were closely compared among the observations carried out at different types of sites in different regions of China in different seasons, with the aim of exploring the nucleation and particle growth mechanisms. The interactions between air pollution and NPF are discussed, emphasizing on the properties of NPF under heavy pollution conditions. The current understanding of NPF cannot not be fully explain the frequent occurrence of NPF at high aerosol loadings in China, and possible reasons for this phenomenon are proposed. The effects of NPF and some aspects of NPF research requiring further investigations are also summarized in this paper.


2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2011 ◽  
Vol 11 (9) ◽  
pp. 25991-26007 ◽  
Author(s):  
R. Makkonen ◽  
A. Asmi ◽  
V.-M. Kerminen ◽  
M. Boy ◽  
A. Arneth ◽  
...  

Abstract. The number of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The total aerosol forcing (−1.61 W m−2 in year 2000) is simulated to be greatly reduced in the future, to −0.23 W m−2, mainly due to decrease in SO2 emissions and resulting decrease in new particle formation. With the total aerosol forcing decreasing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.


2017 ◽  
Vol 17 (2) ◽  
pp. 1529-1541 ◽  
Author(s):  
Clémence Rose ◽  
Karine Sellegri ◽  
Isabel Moreno ◽  
Fernando Velarde ◽  
Michel Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contributes significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, on Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ∼ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between 1 January and 31 December 2012, we found that 61 % of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF, relative to the transport and growth of pre-existing particles, to CCN size. The averaged production of 50 nm particles during those events was 5072, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 53 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud-related radiative processes.


2016 ◽  
Author(s):  
C. Rose ◽  
K. Sellegri ◽  
I. Moreno ◽  
F. Velarde ◽  
M. Ramonet ◽  
...  

Abstract. Global models predict that new particle formation (NPF) is, in some environments, responsible for a substantial fraction of the total atmospheric particle number concentration and subsequently contribute significantly to cloud condensation nuclei (CCN) concentrations. NPF events were frequently observed at the highest atmospheric observatory in the world, Chacaltaya (5240 m a.s.l.), Bolivia. The present study focuses on the impact of NPF on CCN population. Neutral cluster and Air Ion Spectrometer and mobility particle size spectrometer measurements were simultaneously used to follow the growth of particles from cluster sizes down to ~ 2 nm up to CCN threshold sizes set to 50, 80 and 100 nm. Using measurements performed between January 1 and December 31 2012, we found that 61% of the 94 analysed events showed a clear particle growth and significant enhancement of the CCN-relevant particle number concentration. We evaluated the contribution of NPF events relative to the transport of pre-existing particles to the site. The averaged production of 50 nm particles during those events was 5072 cm−3, and 1481 cm−3 for 100 nm particles, with a larger contribution of NPF compared to transport, especially during the wet season. The data set was further segregated into boundary layer (BL) and free troposphere (FT) conditions at the site. The NPF frequency of occurrence was higher in the BL (48 %) compared to the FT (39 %). Particle condensational growth was more frequently observed for events initiated in the FT, but on average faster for those initiated in the BL, when the amount of condensable species was most probably larger. As a result, the potential to form new CCN was higher for events initiated in the BL (67 % against 56 % in the FT). In contrast, higher CCN number concentration increases were found when the NPF process initially occurred in the FT, under less polluted conditions. This work highlights the competition between particle growth and the removal of freshly nucleated particles by coagulation processes. The results support model predictions which suggest that NPF is an effective source of CCN in some environments, and thus may influence regional climate through cloud related radiative processes.


2014 ◽  
Vol 14 (8) ◽  
pp. 3865-3881 ◽  
Author(s):  
M. I. García ◽  
S. Rodríguez ◽  
Y. González ◽  
R. D. García

Abstract. A climatology of new particle formation (NPF) events at high altitude in the subtropical North Atlantic is presented. A 4-year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO2, NOx, and O3), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmosphere Watch (GAW) observatory (2373 m above sea level; Tenerife, Canary Islands) was analysed. NPF is associated with the transport of gaseous precursors from the boundary layer by orographic buoyant upward flows that perturb the low free troposphere during daytime. On average, 30% of the days contained an NPF event. Mean values of the formation and growth rates during the study period were 0.46 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May–August), when these events account for 50–60% of the days per month. Monthly mean values of the formation and growth rates exhibit higher values in this season, 0.49–0.92 cm−3 s−1 and 0.48–0.58 nm h−1, respectively. During NPF events, SO2, UV radiation and upslope winds showed higher values than during non-events. The overall data set indicates that SO2 plays a key role as precursor, although other species seem to contribute during some periods. Condensation of sulfuric acid vapour accounts for most of the measured particle growth during most of the year (~70%), except for some periods. In May, the highest mean growth rates (~0.6 nm h−1) and the lowest contribution of sulfuric acid (~13%) were measured, suggesting a significant involvement of other condensing vapours. The SO2 availability seems also to be the most influencing parameter in the year-to-year variability in the frequency of NPF events. The condensation sink showed similar features to other mountain sites, showing high values during NPF events. Summertime observations, when Izaña is within the Saharan Air Layer, suggest that dust particles may play a significant role acting as coagulation sink of freshly formed nucleation particles. The contribution of dust particles to the condensation sink of sulfuric acid vapours seems to be modest (~8% as average). Finally, we identified a set of NPF events in which two nucleation modes, which may evolve at different rates, occur simultaneously and for which further investigations are necessary.


2018 ◽  
Vol 18 (13) ◽  
pp. 9243-9261 ◽  
Author(s):  
Brice Foucart ◽  
Karine Sellegri ◽  
Pierre Tulet ◽  
Clémence Rose ◽  
Jean-Marc Metzger ◽  
...  

Abstract. This study aims to report and characterise the frequent new particle formation (NPF) events observed at the Maïdo observatory, Réunion, a Southern Hemisphere site located at 2150 m (a.s.l.) and surrounded by the Indian Ocean. From May 2014 to December 2015, continuous aerosol measurements were made using both a differential mobility particle sizer (DMPS) and an air ion spectrometer (AIS) to characterise the NPF events down to the lowest particle-size scale. Carbon monoxide (CO) and black carbon (BC) concentrations were monitored, as well as meteorological parameters, in order to identify the conditions that were favourable to the occurrence of nucleation in this specific environment. We point out that the annual NPF frequency average (65 %) is one of the highest reported so far. Monthly averages show a bimodal variation in the NPF frequency, with a maximum observed during transition periods (autumn and spring). A high yearly median particle growth rate (GR) of 15.16 nm h−1 is also measured showing a bimodal seasonal variation with maxima observed in July and November. Yearly medians of 2 and 12 nm particle formation rates (J2 and J12) are 0.858 and 0.508 cm−3 s−1, respectively, with a seasonal variation showing a maximum during winter, that correspond to low temperature and RH typical of the dry season, but also to high BC concentrations. We show that the condensation sink exceeds a threshold value (1.04×10−3 s−1) with a similar seasonal variation than the one of the NPF event frequency, suggesting that the occurrence of the NPF process might be determined by the availability of condensable vapours, which are likely to be transported together with pre-existing particles from lower altitudes.


2013 ◽  
Author(s):  
Murray V. Johnston ◽  
Bryan R. Bzdek ◽  
Joseph W. DePalma ◽  
M. Ross Pennington ◽  
James N. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document