scholarly journals Alternate Cooling Model vs Newton’s Cooling

2021 ◽  
Vol 11 (01) ◽  
pp. 64-69
Author(s):  
Haiduke Sarafian
Keyword(s):  
2021 ◽  
pp. 127170
Author(s):  
Jianheng Chen ◽  
Lin Lu ◽  
Quan Gong ◽  
Boxiang Wang ◽  
Shenghao Jin ◽  
...  

1979 ◽  
Vol 16 (3) ◽  
pp. 505-522 ◽  
Author(s):  
C. E. Keen

The subsidence histories of the Labrador and Nova Scotian rifted continental margins have been determined from biostratigraphic data for 11 deep exploratory wells off Nova Scotia, for five wells off Labrador, for three wells northeast of Newfoundland, and for one well off the northeast coast of the United States of America. The components of subsidence, due to sediment loading, and when possible due to loading by changes in eustatic sea level, were removed, leaving that part of the subsidence, the tectonic subsidence, caused by cooling of the lithosphere or by other deep seated processes. The thermal cooling model theoretically predicts a linear relationship between tectonic subsidence and t½, where t is the time since subsidence began. This relationship should be obeyed during the first tens of Ma of subsidence. The slope of this curve depends upon the temperature to which the crust and upper mantle were heated during the initial rifting stage and can be used to derive the temperature–time history within the sediments, the present temperature distribution, and geothermal gradient. The data show that the observed subsidence curves behave in accordance with the thermal cooling model, at least during the first 80 Ma after subsidence began and obey the equation y = 300(± 80)t1/2 m, where y is the tectonic subsidence. The slopes of the subsidence curves are similar for the Labrador Shelf, the Nova Scotian Shelf, and the shelf off the northeastern U.S.A. More rapid and variable subsidence occurs northeast of Newfoundland and this may be associated, in a way yet to be established, with the anomalous foundered continental crust near the Orphan Knoll and Flemish Cap micro-continents which lie close to this area. After about 80 Ma, the subsidence appears to depart from the linear t1/2 law in a manner similar to the subsidence curves for oceanic crust, but this is not well established by the data. The present temperatures and temperature gradients computed using the slope of the subsidence curves show good agreement with measured values; geothermal gradients of 17.5 °C km−1 and 26 °C km−1 are calculated off Nova Scotia and Labrador respectively, and mean values of about 23 °C km−1 are observed. The computed temperature–time history within the sediments was used to estimate values of vitrinite reflectance, an indicator of the degree of organic metamorphism. These values show reasonable agreement with the measured values and suggest that only the Upper Jurassic and Lower Cretaceous sediments off Nova Scotia and the Paleocene sediments off Labrador are sufficiently mature to be good sources of petroleum. The linear t1/2 behaviour of the subsidence, and the good agreement between predicted and observed temperatures support the contention that cooling is largely responsible for the observed tectonic subsidence. The similarity of results from different areas suggests that the usefulness of the method is not restricted to a particular geographical area and may be applied to other rifted continental margins. Comparisons between the subsidence rates, thermal histories, and crustal structure at rifted margins on a worldwide scale may provide insights concerning the processes controlling their development. The temperature–time histories of the sediments estimated from the subsidence may be useful in establishing the potential of a rifted margin area for petroleum generation when little other information is available.


1982 ◽  
Vol 46 (340) ◽  
pp. 387-394 ◽  
Author(s):  
G. M. Corrigan

SynopsisNucleation and crystal growth of plagioclase have been studied in two basaltic melts by one atmosphere, constant-rate and variable-rate cooling experiments using the wire-loop technique (Donaldson et al., 1975). Constant-rate cooling studies indicate that the length of the incubation period prior to nucleation varies systematically with the degree of supercooling and with the cooling rate. Attempts to determine the rates at which the marginal parts of two dykes (from the Isle of Arran, SW Scotland) cooled, by the attempted reproduction of the natural textural features, in constant-rate cooling experiments suggest that for one of the dykes, plagioclase phenocrysts at the contact could have grown at a cooling rate of approximately 3°C/hour and the groundmass plagioclase laths at faster cooling rates in excess of 10°C/hour. For the other dyke the plagioclase laths in the rocks 0.5 cm from the dyke contact probably grew at rates slower than 2°C/hour. Attempts to validate experimentally the Jaeger (1957) cooling model for the two dykes suggest that the dykes cooled at much slower rates than the theory predicts.


2000 ◽  
Vol 177 ◽  
pp. 633-634
Author(s):  
Jon Bell ◽  
Marten van Kerkwijk ◽  
Vicky Kaspi ◽  
Shri Kulkarni

AbstractWe report on Keck and HST observations of the binary millisecond pulsar PSR B1855+09. We detect its white-dwarf companion and measuremF555W= 25.90 ± 0.12 andmF814W= 24.19 ± 0.11 (Vega system). From the reddening-corrected color we infer a temperatureTeff= 4800 ± 800 K. The companion mass is known accurately from measurements of the Shapiro delay of the pulsar signal,. Given a cooling model, one can use the measured temperature to determine the cooling age. The main uncertainty in the cooling models for such low-mass white dwarfs is the amount of residual nuclear burning, which depends on the thickness of the hydrogen layer surrounding the helium core. For PSR B1855+09, such models lead to a cooling age of ∼10Gyr, which is twice the spin-down age of the pulsar. It may be that the pulsar does not brake (n=3.0) like a dipole rotatingin vacuo. For other pulsar companions, however, ages well over lOGyr are inferred, indicating that the problem may lie with the cooling models. There is no age discrepancy for models in which the white dwarfs are formed with thinner hydrogen layers (< 3 × 10−4M⊙). See van Kerkwijk et al. ApJ (submitted) for more details.


Author(s):  
Tilman auf dem Kampe ◽  
Stefan Vo¨lker

This paper presents the application of a CFD-based film cooling model to a gas turbine vane cascade test rig. The experimental investigations feature aerodynamic and endwall film cooling measurements on a first stage gas turbine vane in a linear cascade. An extended version of a previously developed cylindrical hole film cooling model has been employed, which now includes modeling of shaped hole cooling flows. The computational domain extends approximately one axial chord length upstream of the leading edge and downstream of the trailing edge of the vane. Adjacent solid parts are included by means of a conjugate heat transfer analysis to account for conduction effects. A hybrid mesh with resolved boundary layers and high spatial mesh resolution in the near-wall region is being used. This meshing approach ensures that the near-wall mesh resolution requirements of the film cooling model are satisfied, while maintaining a manageable total node count. Results obtained using the film cooling model are compared to surface distributions of film cooling effectiveness from the experimental cascade. Due to the moderate node count (≈ 3.5 × 106), CFD calculations including film cooling flows can be performed at comparatively low computational cost. The film cooling model, which previously had been validated against flat plate measurement data and applied to single cooling hole configurations only, is therefore shown to be a viable tool for the thermal design of gas turbine components with film cooling.


2013 ◽  
Vol 70 (7) ◽  
pp. 2272-2292 ◽  
Author(s):  
Pablo Zurita-Gotor ◽  
Geoffrey K. Vallis

Abstract This paper investigates the mechanisms that determine the extratropical tropopause height, extending previous results with a Newtonian cooling model. A primitive equation model forced by a meridional gradient of incoming solar radiation, with the outgoing infrared radiation calculated using a simple gray radiation scheme, is now used. The tropopause is defined as the top of the boundary layer over which dynamical heat transport moves the temperature away from radiative equilibrium, and its height is estimated from the isentropic mass flux. Depending on parameters, this tropopause may or may not be associated with a sharp stratification change, and it may or may not be possible to define a thermal tropopause. The mass flux and thermal tropopause display similar sensitivity to external parameters when the latter can be defined; this is a sensitivity in good agreement with predictions by a radiative constraint. In some contrast to the Newtonian model, the radiative constraint is now quite effective in preventing adjustment to marginal criticality with realistic parameters. The meridional structure of the thermal tropopause displays a jump in height at the jet latitude, which appears to be due to the formation of a mixing barrier at the jet maximum when baroclinicity has a finite vertical scale. As meridional potential vorticity mixing is inhibited across the jet, a discontinuity is created between weakly stratified air on its warm side and strongly stratified air on its cool side. The meridional stratification contrast is created by adiabatic cooling and warming by the residual circulation, as this circulation must be deflected vertically to avoid the mixing barrier at the jet maximum.


Author(s):  
K. H. Kang ◽  
R. J. Park ◽  
J. T. Kim ◽  
S. B. Kim ◽  
H. D. Kim

The analysis of the LAVA (Lower-plenum Arrested Vessel Attack) experimental results focused on gap formation and in-vessel gap cooling characteristics have been performed. In the LAVA experiment, Al2O3/Fe thermite melt (or Al2O3 only) was used as a corium simulant with a 1/8 linear scale mock-up of the reactor vessel lower plenum. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation in case there was an internal pressure load across the vessel. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were mainly determined by the possibilities of the water ingression into the gap. The possibility of heat removal through the gap in the LAVA experiments was confirmed from that the vessel cooled down with the conduction heat flux through the vessel by 70 to 470 kW/m2. Also the quantitative evaluations of the in-vessel coolability using gap cooling model based on counter current flow limits (CCFL) have been performed for the LAVA experiments in parallel. It could be inferred from the analysis for the LAVA experiments that the vessel could effectively cooldown via heat removal through the gap cooling even if 2mm thick gap should form between the interface of the melt and the vessel in the 30 kg of Al2O3 melt tests. In the case of large melt mass of 70 kg of Al2O3 melt, however, the infinite possibility of heat removal through a small size gap such as 1 to 2 mm thick couldn’t be guaranteed due to the difficulties of water ingression through the gap into the lower head vessel bottom induced by the CCFL. Synthesized the experimental results and the analytical evaluations using the CCFL model, it could be found that the coolability through gap cooling was affected mainly by the melt composition and mass and also the gap thickness.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3769 ◽  
Author(s):  
Moqadam ◽  
Mädler ◽  
Ellendt

: High-throughput methods for the development of structural materials require samples which are comparable in geometric dimensions and microstructure. Molten metal droplet generators produce thousands of droplets and microspheres from specific alloys with very good reproducibility. In this study, droplet generation experiments were conducted with two alloys and their microstructure was analyzed regarding secondary dendrite arm spacing (SDAS) in order to determine cooling rates during solidification. A droplet cooling model was developed, and predictions showed good agreement with the experimental data. Finally, a sensitivity study was conducted using the validated model to identify critical process parameters which have great impact on the resulting microstructure and need to be well-controlled to achieve the desired reproducibility in microstructure.


Sign in / Sign up

Export Citation Format

Share Document