scholarly journals A Biological Restoration Model for Contaminated Coastal Marshes and Islands Using the Life Cycle of Acheta domesticus to Establish Environmental Sustainability

2020 ◽  
Vol 09 (02) ◽  
pp. 13-21
Author(s):  
Anna Leyrer ◽  
Edward Bush ◽  
James Geaghan ◽  
Buffy Meyer
2021 ◽  
Vol 11 (12) ◽  
pp. 5519
Author(s):  
Rui Carvalho ◽  
Alberto Rodrigues da Silva

Sustainable development was defined by the UN in 1987 as development that meets the needs of the present without compromising the ability of future generations to meet their own needs, and this is a core concept in this paper. This work acknowledges the three dimensions of sustainability, i.e., economic, social, and environmental, but its focus is on this last one. A digital twin (DT) is frequently described as a physical entity with a virtual counterpart, and the data, connections between the two, implying the existence of connectors and blocks for efficient and effective data communication. This paper provides a meta systematic literature review (SLR) (i.e., an SLR of SLRs) regarding the sustainability requirements of DT-based systems. Numerous papers on the subject of DT were also selected because they cited the analyzed SLRs and were considered relevant to the purposes of this research. From the selection and analysis of 29 papers, several limitations and challenges were identified: the perceived benefits of DTs are not clearly understood; DTs across the product life cycle or the DT life cycle are not sufficiently studied; it is not clear how DTs can contribute to reducing costs or supporting decision-making; technical implementation of DTs must be improved and better integrated in the context of the IoT; the level of fidelity of DTs is not entirely evaluated in terms of their parameters, accuracy, and level of abstraction; and the ownership of data stored within DTs should be better understood. Furthermore, from our research, it was not possible to find a paper discussing DTs only in regard to environmental sustainability.


2021 ◽  
Vol 13 (9) ◽  
pp. 4948
Author(s):  
Núria Boix Rodríguez ◽  
Giovanni Formentini ◽  
Claudio Favi ◽  
Marco Marconi

Face masks are currently considered key equipment to protect people against the COVID-19 pandemic. The demand for such devices is considerable, as is the amount of plastic waste generated after their use (approximately 1.6 million tons/day since the outbreak). Even if the sanitary emergency must have the maximum priority, environmental concerns require investigation to find possible mitigation solutions. The aim of this work is to develop an eco-design actions guide that supports the design of dedicated masks, in a manner to reduce the negative impacts of these devices on the environment during the pandemic period. Toward this aim, an environmental assessment based on life cycle assessment and circularity assessment (material circularity indicator) of different types of masks have been carried out on (i) a 3D-printed mask with changeable filters, (ii) a surgical mask, (iii) an FFP2 mask with valve, (iv) an FFP2 mask without valve, and (v) a washable mask. Results highlight how reusable masks (i.e., 3D-printed masks and washable masks) are the most sustainable from a life cycle perspective, drastically reducing the environmental impacts in all categories. The outcomes of the analysis provide a framework to derive a set of eco-design guidelines which have been used to design a new device that couples protection requirements against the virus and environmental sustainability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jun Li ◽  
Fengyin Xiong ◽  
Zhuo Chen

AbstractBiomass gasification, especially distribution to power generation, is considered as a promising way to tackle global energy and environmental challenges. However, previous researches on integrated analysis of the greenhouse gases (GHG) abatement potentials associated with biomass electrification are sparse and few have taken the freshwater utilization into account within a coherent framework, though both energy and water scarcity are lying in the central concerns in China’s environmental policy. This study employs a Life cycle assessment (LCA) model to analyse the actual performance combined with water footprint (WF) assessment methods. The inextricable trade-offs between three representative energy-producing technologies are explored based on three categories of non-food crops (maize, sorghum and hybrid pennisetum) cultivated in marginal arable land. WF results demonstrate that the Hybrid pennisetum system has the largest impact on the water resources whereas the other two technology options exhibit the characteristics of environmental sustainability. The large variances in contribution ratio between the four sub-processes in terms of total impacts are reflected by the LCA results. The Anaerobic Digestion process is found to be the main contributor whereas the Digestate management process is shown to be able to effectively mitigate the negative environmental impacts with an absolute share. Sensitivity analysis is implemented to detect the impacts of loss ratios variation, as silage mass and methane, on final results. The methane loss has the largest influence on the Hybrid pennisetum system, followed by the Maize system. Above all, the Sorghum system demonstrates the best performance amongst the considered assessment categories. Our study builds a pilot reference for further driving large-scale project of bioenergy production and conversion. The synergy of combined WF-LCA method allows us to conduct a comprehensive assessment and to provide insights into environmental and resource management.


2021 ◽  
Vol 13 (9) ◽  
pp. 4886
Author(s):  
Katia Perini ◽  
Fabio Magrassi ◽  
Andrea Giachetta ◽  
Luca Moreschi ◽  
Michela Gallo ◽  
...  

Urban greening provides a wide range of ecosystem services to address the main challenges of urban areas, e.g., carbon sequestration, evapotranspiration and shade, thermal insulation, and pollution control. This study evaluates the environmental sustainability of a vertical greening system (VGS) built in 2014 in Italy, for which extensive monitoring activities were implemented. The life-cycle assessment methodology was applied to quantify the water–energy–climate nexus of the VGS for 1 m2 of the building’s wall surface. Six different scenarios were modelled according to three different end-of-life scenarios and two different useful lifetime scenarios (10 and 25 years). The environmental impact of global-warming potential and generated energy consumption during the use phase in the VGS scenarios were reduced by 56% in relation to the baseline scenario (wall without VGS), and showed improved environmental performance throughout the complete life cycle. However, the water-scarcity index (WSI) of the VGS scenarios increased by 42%. This study confirms that the installation of VGSs offers a relevant environmental benefit in terms of greenhouse-gas emissions and energy consumption; however, increased water consumption in the use phase may limit the large-scale application of VGSs.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Lelia Murgia ◽  
Giuseppe Todde ◽  
Maria Caria ◽  
Antonio Pazzona

Dairy farming is constantly evolving towards more intensive levels of mechanization and automation which demand more energy consumption and result in higher economic and environmental costs. The usage of fossil energy in agricultural processes contributes to climate change both with on-farm emissions from the combustion of fuels, and by off-farm emissions due to the use of grid power. As a consequence, a more efficient use of fossil resources together with an increased use of renewable energies can play a key role for the development of more sustainable production systems. The aims of this study were to evaluate the energy requirements (fuels and electricity) in dairy farms, define the distribution of the energy demands among the different farm operations, identify the critical point of the process and estimate the amount of CO2 associated with the energy consumption. The inventory of the energy uses has been outlined by a partial Life Cycle Assessment (LCA) approach, setting the system boundaries at the farm level, from cradle to farm gate. All the flows of materials and energy associated to milk production process, including crops cultivation for fodder production, were investigated in 20 dairy commercial farms over a period of one year. Self-produced energy from renewable sources was also accounted as it influence the overall balance of emissions. Data analysis was focused on the calculation of energy and environmental sustainability indicators (EUI, CO2-eq) referred to the functional units. The production of 1 kg of Fat and Protein Corrected Milk (FPCM) required on average 0.044 kWhel and 0.251 kWhth, corresponding to a total emission of 0.085 kg CO2-eq). The farm activities that contribute most to the electricity requirements were milk cooling, milking and slurry management, while feeding management and crop cultivation were the greatest diesel fuel consuming operation and the largest in terms of environmental impact of milk production (73% of energy CO2-eq emissions). The results of the study can assist in the development of dairy farming models based on a more efficient and profitable use of the energy resources.


2013 ◽  
Vol 54 ◽  
pp. 215-228 ◽  
Author(s):  
Anne Holma ◽  
Kati Koponen ◽  
Riina Antikainen ◽  
Laurent Lardon ◽  
Pekka Leskinen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document