scholarly journals Theoretical Calculation of Lift Force for Ideal Electric Asymmetric Capacitor Loaded by High Voltage

Engineering ◽  
2020 ◽  
Vol 12 (01) ◽  
pp. 33-40
Author(s):  
Xiangyu Cheng ◽  
Guangli Kuang ◽  
Yan Zhang ◽  
Pengcheng Huang ◽  
Donghui Jiang ◽  
...  
Engineering ◽  
2020 ◽  
Vol 12 (01) ◽  
pp. 41-46
Author(s):  
Yan Zhang ◽  
Xiangyu Cheng ◽  
Pengcheng Huang ◽  
Donghui Jiang ◽  
Shili Jiang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-Guo Huang ◽  
Xiang-Yu Cheng

The asymmetric capacitor’s lift force formula can be obtained on the basis of literature review, which can almost cover all practical forms of asymmetric capacity forms. But there are still some problems we should solve. The first and foremost one is whether the formulas are correct and can they be verified in engineering practices? On the contrary, the parameter q in the formulas is normally unknown in the beginning of calculations, how can we get or reckon up it so as to use the formulas smoothly? In this paper, we set out to solve these questions.


2015 ◽  
Vol 37 (3) ◽  
pp. 3307-1-3307-5
Author(s):  
M. Cattani ◽  
A. Vannucci ◽  
V. G. Souza

This paper shows in detail the construction and operation of an apparatus that levitates when submitted to voltages greater or of the order of 20 kV. This device, which basically corresponds to an asymmetric capacitor, is commonly known in the literature by the name ‘lifter’. It also will be shown in this article, through rather simplified calculations, that the physics grounds of the observed levitation effect are intrinsically related to the transference of linear momentum of the ions (positive or negative) to the surrounding atmosphere. These ions are produced within the conductor of very small curvature (hence, great electrical potential) due to the so called corona effect and, once created, they are immediately accelerated by the intrinsic electric field lines configuration, producing multiple collisions with the air molecules, causing the transference of momentum and, therefore, provoking the observed lifter ascendant impulsion.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
L. E. Thomas ◽  
J. S. Lally ◽  
R. M. Fisher

In addition to improved penetration at high voltage, the characteristics of HVEM images of crystalline materials are changed markedly as a result of many-beam excitation effects. This leads to changes in optimum imaging conditions for dislocations, planar faults, precipitates and other features.Resolution - Because of longer focal lengths and correspondingly larger aberrations, the usual instrument resolution parameter, CS174 λ 374 changes by only a factor of 2 from 100 kV to 1 MV. Since 90% of this change occurs below 500 kV any improvement in “classical” resolution in the MVEM is insignificant. However, as is widely recognized, an improvement in resolution for “thick” specimens (i.e. more than 1000 Å) due to reduced chromatic aberration is very large.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Author(s):  
J. S. Lally ◽  
R. Evans

One of the instrumental factors often limiting the resolution of the electron microscope is image defocussing due to changes in accelerating voltage or objective lens current. This factor is particularly important in high voltage electron microscopes both because of the higher voltages and lens currents required but also because of the inherently longer focal lengths, i.e. 6 mm in contrast to 1.5-2.2 mm for modern short focal length objectives.The usual practice in commercial electron microscopes is to design separately stabilized accelerating voltage and lens supplies. In this case chromatic aberration in the image is caused by the random and independent fluctuations of both the high voltage and objective lens current.


Author(s):  
Hans Ris

The High Voltage Electron Microscope Laboratory at the University of Wisconsin has been in operation a little over one year. I would like to give a progress report about our experience with this new technique. The achievement of good resolution with thick specimens has been mainly exploited so far. A cold stage which will allow us to look at frozen specimens and a hydration stage are now being installed in our microscope. This will soon make it possible to study undehydrated specimens, a particularly exciting application of the high voltage microscope.Some of the problems studied at the Madison facility are: Structure of kinetoplast and flagella in trypanosomes (J. Paulin, U. of Georgia); growth cones of nerve fibers (R. Hannah, U. of Georgia Medical School); spiny dendrites in cerebellum of mouse (Scott and Guillery, Anatomy, U. of Wis.); spindle of baker's yeast (Joan Peterson, Madison) spindle of Haemanthus (A. Bajer, U. of Oregon, Eugene) chromosome structure (Hans Ris, U. of Wisconsin, Madison). Dr. Paulin and Dr. Hanna are reporting their work separately at this meeting and I shall therefore not discuss it here.


Sign in / Sign up

Export Citation Format

Share Document