scholarly journals Validation of Total Daily Energy Expenditure Calculated with Actiheart against Doubly Labeled Water Method in Costa Rican Schoolchildren

2015 ◽  
Vol 06 (13) ◽  
pp. 1193-1201 ◽  
Author(s):  
Juan Diego Zamora-Salas ◽  
Adriana Laclé-Murray
1989 ◽  
Vol 67 (1) ◽  
pp. 14-18 ◽  
Author(s):  
C. H. Forbes-Ewan ◽  
B. L. Morrissey ◽  
G. C. Gregg ◽  
D. R. Waters

The doubly labeled water method was used to estimate the energy expended by four members of an Australian Army platoon (34 soldiers) engaged in training for jungle warfare. Each subject received an oral isotope dose sufficient to raise isotope levels by 200–250 (18O) and 100–120 ppm (2H). The experimental period was 7 days. Concurrently, a factorial estimate of the energy expenditure of the platoon was conducted. Also, a food intake-energy balance study was conducted for the platoon. Mean daily energy expenditure by the doubly labeled water method was 4,750 kcal (range 4,152–5,394 kcal). The factorial estimate of mean daily energy expenditure was 4,535 kcal. Because of inherent inaccuracies in the food intake-energy balance technique, we were able to conclude only that energy expenditure, as measured by this method, was greater than the estimated mean daily intake of 4,040 kcal. The doubly labeled water technique was well tolerated, is noninvasive, and appears to be suitable in a wide range of field applications.


1988 ◽  
Vol 66 (3) ◽  
pp. 555-561 ◽  
Author(s):  
Roland Vernet ◽  
Claude Grenot ◽  
Saïd Nouira

Water flux and daily energy expenditure were measured with doubly labeled water (3HH18O) in two insectivorous sympatric species of Lacertidae of Kerkennah islands (Tunisia), Eremias olivieri (mean body mass: 1.1 g) and Acanthodactylus pardalis (4.5 g) in a semiarid environment. Water turnover and field metabolic rate of Eremias olivieri (174 μL H2O g−1 d−1 and 250 J g−1 d−1) were, respectively, 2.5 and 5 times higher than those of Acanthodactylus pardalis (70 μL H2O g−1 d−1 and 52 J g−1 d−1). The water turnover of Eremias olivieri is one of the highest known among insectivorous lizards, and the daily energy expenditure of Acanthodactylus pardalis one of the lowest. The most plausible explanations are the differences in the size of the prey eaten by each species at this time of the season and in the duration of daily activity; the daily activity of Acanthodactylus pardalis is short (4.5 h d−1) although it is a sit-and-wait predator, whereas Eremias olivieri is active regularly every day for a longer period (7.5 h d−1) although it is an active forager. The high values of water turnover in Eremias olivieri suggest that food is not the only source of water for lizards in this particular insular environment.


Author(s):  
Haley M. Scott ◽  
Tess N. Tyton ◽  
Craig A. Horswill

As the prevalence of obesity rises worldwide, researchers pursue explanations for the phenomenon, particularly those relevant to energy expenditure.  Non-exercise activity thermogenesis, or NEAT, has been identified as an inconspicuous but appreciable component of total daily energy expenditure.  Demands of certain occupations discourage time for planned physical activity and clearly diminish NEAT, and thereby contribute to sedentary behaviors that underlie increased adiposity. Prolonged sitting during the workday has specifically been identified as a risk factor for obesity and chronic disease independent of existing risk factors. Practical strategies have been launched by industry to increase NEAT during the workday. Workstations that involve maintaining balance while sitting on an exercise ball, standing, pedaling while sitting, and walking at a treadmill desk have been developed to counter extended periods of sedentary behavior at work.  While data are limited particularly for chronic benefits, the stations that promote the most movement – the pedaling and walking stations – increase METS and energy expenditure more so than the other alternatives.  The drawback to greater motion may be reduced attention to the desk job and therefore, reduced cognitive function; however, the data are inconsistent and the benefit for health may outweigh small distractions for some tasks at the desk.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 623-623
Author(s):  
Luiz Dos Anjos ◽  
Bruna Silva ◽  
Vivian Wahrlich

Abstract Objectives To assess different methods of estimating energy balance (EB) and its components in a sample of older people (age ≥ 60 years) living in a tropical city in Brazil. Methods EB was calculated in 85 older individuals (69 women) as the difference between energy intake (EI), obtained by three 24-hour dietary recalls on nonconsecutive days, and total daily energy expenditure (TDEE) estimated by 24-hour physical activity recalls (24hPAR, subjective method) and accelerometry (ACC, objective method) on the same days. Basal metabolic rate (BMR) was estimated by a validated local predictive equations derived from a sample of healthy adults from the same city and by international equations (Schofield). Resting energy expenditure (MET) was also estimated by local predictive equation and the conventional value of 3.5 mL.kg−1.min−1. Anthropometry and % body fat (DXA) assessment was also obtained. Results Mean (SD) age was 69.0 (5.5) years with a mean BMI of 26.7 (4.4) kg.m−2 and %BF of 39.4 (7.9). BMR from locally-derived equations (1050.7 ± 188.7 kcal.day−1) was significantly lower than BMR estimated by the Schofield's equation (1286.5 ± 145.3 kcal.day−1). Likewise, predicted MET was significantly lower than the conventional value. Despite the high prevalence of overweight (66% with BMI ≥ 25 kg.m−2), EB was always negative for the 24hPAR method (−863.5 ± 799.5 kcal.day−1) but positive (252.1 ± 726.6 kcal.day−1) with the ACC method when MET was calculated with population-specific equations. EB estimated by ACC was also negative (−122.7 ± 781.0 kcal.day−1) using the conventional MET value. Conclusions The findings of this study indicate that EB is negative when the subjective method of TDEE estimation is used but becomes positive with the objective method. It is also evident that BMR and MET equations derived from samples of the population of interest may help improve the final estimates of TDEE and EB in older adults. Funding Sources CNPq (310,461/2016–20 and 485,168/2011–1) and FAPERJ (E-26/111.496/2011; E-26/202.514/2018; E-26/203.068/2017).


Sign in / Sign up

Export Citation Format

Share Document