scholarly journals 2D Materials as Protective Coating against Low and Middle Temperature (100?C - 300?C) Corrosion-Erosion in Waste to Energy Plant: Case of Graphene

Graphene ◽  
2021 ◽  
Vol 10 (02) ◽  
pp. 13-39
Author(s):  
Zuopeng Qu ◽  
Josué Ngondo Otshwe
2021 ◽  
Vol 106 ◽  
pp. 103242
Author(s):  
Johan Fagerlund ◽  
Ron Zevenhoven ◽  
Jørgen Thomassen ◽  
Marius Tednes ◽  
Farhang Abdollahi ◽  
...  

Author(s):  
Nickolas J. Themelis

This report presents the results of a study that examined alternatives to landfilling the municipal solid wastes (MSW) of New York City. Detailed characterization of the wastes led to their classification, according to materials properties and inherent value, to “recyclable”, “compostable”, “combustible”, and “landfillable”. The results showed that the present rates of recycling (16.6%) and combustion (12.4%) in New York City can be increased by a) implementing an automated, modern Materials Recovery Facility (MRF) that separates the blue bag stream to “recyclables” and “combustibles”, and b) combusting the non-recyclable materials in a Waste-to-Energy (WTE) facility. Combustion of wastes to produce electricity is environmentally much preferable to landfilling. An advanced technology for combustion is that used in a modern Waste-to-Energy plant (SEMASS, Massachusetts) that processes 0.9 million metric tons of MSW per year, generates a net of 610 kWh per metric ton of MSW, recovers ferrous and non-ferrous metals, and has lower emissions than many coal-fired power plants.


2013 ◽  
Vol 105 ◽  
pp. 106-112 ◽  
Author(s):  
Peter Viklund ◽  
Anders Hjörnhede ◽  
Pamela Henderson ◽  
Annika Stålenheim ◽  
Rachel Pettersson
Keyword(s):  

2021 ◽  
Author(s):  
Ulrich Weber ◽  
Niko Kampman ◽  
Tomas Mikoviny ◽  
Jørgen Thomassen ◽  
Anja Sundal

Author(s):  
Peter A. Napoli ◽  
Lindsey Sampson ◽  
Robin Davidov ◽  
Bettina Kamuk

This topic is important because of the growing need for us to produce and supply low cost energy for public consumption. Demand has increased exponentially, and in order to reduce dependence on foreign oil, coal, and natural gas we need to utilize waste to its full potential. Three major waste to energy plant expansions are happening now at Olmstead WTE, Minnesota and at Lee and Hillsborough Counties, in Florida. New “Greenfield” construction is planned at Harford, Carroll, and Fredrick Counties, in Maryland.


Fuel ◽  
2015 ◽  
Vol 140 ◽  
pp. 317-327 ◽  
Author(s):  
Guanyi Chen ◽  
Nan Zhang ◽  
Wenchao Ma ◽  
Vera Susanne Rotter ◽  
Yu Wang

2018 ◽  
Vol 54 (2A) ◽  
pp. 56
Author(s):  
Phung Chi Vy

Domestic solid wastes are classified into 10 samples of 04 groups with different sizes: 2 samples with sizes under and over 120 mm (M1-1, M1-2); 2 samples with sizes under and over 80 mm (M2-1, M2-2); 2 samples with sizes under and over 40 mm (M3-1, M3-2); 4 samples with sizes under 40 mm, 40 to 80 mm, 80 to 120 mm and over 120 mm (M4-1, M4-2, M4-3, M4-4). Results of sorting 10 solid waste samples into food, cloth, wood, plastic, paper, rubber/leather, metal, glass, other organic and inorganic components shown that recycled combustible, non-recycled combustible portions are ranged from 15,46 to 93,90 %, from 5,34 to 80,17 %, respectively. The density of 10 compressed garbage samples is ranged from 525,9 to 2016,7 kg/m3; moisture contents are ranged from 18.03 to 20.92 %. Ash content is ranged from 1.12 to 9.49 % dry weight; Calorific value is ranged from 3164,9 to 5757,0 kcal/kg of garbage. The volume of leached water from 10 kg wet garbage pressed by 250 kg load in 2 days is 300 ml (equivalent to 327,1 g). Results of elemental composition analysis shown that the contents of C, H, N, Cl, S are ranged from 35,00 to 51,96, from 6,01 to 6,23, from 0,41 to 0,88, from 0,44 to 0,56, from 0,14 to 0,84 %, respectively. On this basis, the author have proposed a waste-to-energy plant with capacity of 250 tons of waste/day to generate the electricity with capacity of 17,0 MW/day.


Sign in / Sign up

Export Citation Format

Share Document