scholarly journals The Staggered Fermion for the Gross-Neveu Model at Non-Zero Temperature and Density

2021 ◽  
Vol 12 (13) ◽  
pp. 1795-1821
Author(s):  
Daming Li
1991 ◽  
Vol 43 (16) ◽  
pp. 13684-13685
Author(s):  
Lior Klein ◽  
Joan Adler ◽  
Amnon Aharony ◽  
A. B. Harris ◽  
Yigal Meir

2007 ◽  
Vol 99 (26) ◽  
Author(s):  
P. M. Walmsley ◽  
A. I. Golov ◽  
H. E. Hall ◽  
A. A. Levchenko ◽  
W. F. Vinen

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Pengfei Zhang

Abstract In this work, we study a generalization of the coupled Sachdev-Ye-Kitaev (SYK) model with U(1) charge conservations. The model contains two copies of the complex SYK model at different chemical potentials, coupled by a direct hopping term. In the zero-temperature and small coupling limit with small averaged chemical potential, the ground state is an eternal wormhole connecting two sides, with a specific charge Q = 0, which is equivalent to a thermofield double state. We derive the conformal Green’s functions and determine corresponding IR parameters. At higher chemical potential, the system transit into the black hole phase. We further derive the Schwarzian effective action and study its quench dynamics. Finally, we compare numerical results with the analytical predictions.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Dean Carmi

Abstract We continue the study of AdS loop amplitudes in the spectral representation and in position space. We compute the finite coupling 4-point function in position space for the large-N conformal Gross Neveu model on AdS3. The resummation of loop bubble diagrams gives a result proportional to a tree-level contact diagram. We show that certain families of fermionic Witten diagrams can be easily computed from their companion scalar diagrams. Thus, many of the results and identities of [1] are extended to the case of external fermions. We derive a spectral representation for ladder diagrams in AdS. Finally, we compute various bulk 2-point correlators, extending the results of [1].


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1838
Author(s):  
Evgeny Yakovlev ◽  
Igor Tokarev ◽  
Sergey Zykov ◽  
Stanislav Iglovsky ◽  
Nikolay Ivanchenko

The isotopic (234U/238U, 2H, 18O) and chemical composition of groundwater on the right bank of the Volga River along the middle reach (European Russia) was studied down to a depth of 400 m. These data allow diagnosis of the presence of a three-component mixture. The first component is modern/young fresh recharge water of the Holocene age. It has the isotopic composition of water δ18O → −12.9 ‰ and δ2H → −90 ‰, close to modern precipitations, and the equilibrium isotopic composition of uranium 234U/238U → 1 (by activity). The second component is slightly salted water of the late or postglacial period with δ18O → −17.0 ‰ and δ2H → −119 ‰, and a small excess of uranium-234 234U/238U ≈ 4. The third component is meltwater formed as result of permafrost thawing. It is brackish water with δ18O ≈ −15.0 ‰ and δ2H ≈ −110 ‰, and a maximum excess of uranium-234 234U/238U ≈ 15.7. The salinity of this water is associated with an increase of the SO42−, Ca2+ and Na+ content, and this may be due to the presence of gypsum in water-bearing sediments, because the solubility of sulfates increases at near-zero temperature. We explain the huge excess of uranium-234 by its accumulation in the mineral lattice during the glacial age and quick leaching after thawing of permafrost.


Sign in / Sign up

Export Citation Format

Share Document