scholarly journals <i>Gsta</i>4 Null Mouse Embryonic Fibroblasts Exhibit Enhanced Sensitivity to Oxidants: Role of 4-Hydroxynonenal in Oxidant Toxicity

2013 ◽  
Vol 02 (01) ◽  
pp. 1-11 ◽  
Author(s):  
Kevin E. McElhanon ◽  
Chhanda Bose ◽  
Rajendra Sharma ◽  
Liping Wu ◽  
Yogesh C. Awasthi ◽  
...  
2008 ◽  
Vol 283 (33) ◽  
pp. 22430-22442 ◽  
Author(s):  
Matthew D. Bruss ◽  
Wito Richter ◽  
Kathleen Horner ◽  
S.-L. Catherine Jin ◽  
Marco Conti

mSystems ◽  
2019 ◽  
Vol 4 (6) ◽  
Author(s):  
Kiran Bala Sharma ◽  
Manish Sharma ◽  
Suruchi Aggarwal ◽  
Amit Kumar Yadav ◽  
Shinjini Bhatnagar ◽  
...  

ABSTRACT Basal autophagy is crucial for maintenance of cellular homeostasis. ATG5 is an essential protein for autophagosome formation, and its depletion has been extensively used as a tool to disrupt autophagy. Here, we characterize the impact of Atg5 deficiency on the cellular proteome of mouse embryonic fibroblasts (MEFs). Using a tandem mass tagging (TMT)-based quantitative proteomics analysis, we observe that 14% of identified proteins show dysregulated levels in atg5−/− MEFs. These proteins were distributed across diverse biological processes, such as cell adhesion, development, differentiation, transport, metabolism, and immune responses. Several of the upregulated proteins were receptors involved in transforming growth factor β (TGF-β) signaling, JAK-STAT signaling, junction adhesion, and interferon/cytokine-receptor interactions and were validated as autophagy substrates. Nearly equal numbers of proteins, including several lysosomal proteins and enzymes, were downregulated, suggesting a complex role of autophagy/ATG5 in regulating their levels. The atg5−/− MEFs had lower levels of key immune sensors and effectors, including Toll-like receptor 2 (TLR2), interferon regulatory factor 3 (IRF3), IRF7, MLKL, and STAT1/3/5/6, which were restored by reexpression of ATG5. While these cells could efficiently mount a type I interferon response to the double-stranded RNA (dsRNA) mimic poly(I·C), they were compromised in their inflammatory response to the bacterial pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and Pam3CSK4. Transcriptional activation and secretion of interleukin-6 (IL-6) in these cells could be recovered by ATG5 expression, supporting the role of autophagy in the TLR2-induced inflammatory response. This study provides a key resource for understanding the effect of autophagy/ATG5 deficiency on the fibroblast proteome. IMPORTANCE Autophagy performs housekeeping functions for cells and maintains a functional mode by degrading damaged proteins and organelles and providing energy under starvation conditions. The process is tightly regulated by the evolutionarily conserved Atg genes, of which Atg5 is one such crucial mediator. Here, we have done a comprehensive quantitative proteome analysis of mouse embryonic fibroblasts that lack a functional autophagy pathway (Atg5 knockout). We observe that 14% of the identified cellular proteome is remodeled, and several proteins distributed across diverse cellular processes with functions in signaling, cell adhesion, development, and immunity show either higher or lower levels under autophagy-deficient conditions. These cells have lower levels of crucial immune proteins that are required to mount a protective inflammatory response. This study will serve as a valuable resource to determine the role of autophagy in modulating specific protein levels in cells.


Author(s):  
Philip Kurien ◽  
Pei-Ken Hsu ◽  
Jacy Leon ◽  
David Wu ◽  
Thomas McMahon ◽  
...  

Many components of the circadian molecular clock are conserved from flies to mammals; however, the role of mammalian Timeless remains ambiguous. Here, we report a mutation in the human TIMELESS (hTIM) gene that causes familial advanced sleep phase (FASP). Tim CRISPR mutant mice exhibit FASP with altered photic entrainment but normal circadian period. We demonstrate that the mutation prevents TIM accumulation in the nucleus and has altered affinity for CRY2, leading to destabilization of PER/CRY complex and a shortened period in nonmature mouse embryonic fibroblasts (MEFs). We conclude that TIM, when excluded from the nucleus, can destabilize the negative regulators of the circadian clock, alter light entrainment, and cause FASP.


2008 ◽  
Vol 19 (7) ◽  
pp. 2766-2776 ◽  
Author(s):  
Dong-won Lee ◽  
Xiaohong Zhao ◽  
Yang-In Yim ◽  
Evan Eisenberg ◽  
Lois E. Greene

Hsc70 with its cochaperone, either auxilin or GAK, not only uncoats clathrin-coated vesicles but also acts as a chaperone during clathrin-mediated endocytosis. However, because synaptojanin is also involved in uncoating, it is not clear whether GAK is an essential gene. To answer this question, GAK conditional knockout mice were generated and then mated to mice expressing Cre recombinase under the control of the nestin, albumin, or keratin-14 promoters, all of which turn on during embryonic development. Deletion of GAK from brain, liver, or skin dramatically altered the histology of these tissues, causing the mice to die shortly after birth. Furthermore, by expressing a tamoxifen-inducible promoter to express Cre recombinase we showed that deletion of GAK caused lethality in adult mice. Mouse embryonic fibroblasts in which the GAK was disrupted showed a lack of clathrin-coated pits and a complete block in clathrin-mediated endocytosis. We conclude that GAK deletion blocks development and causes lethality in adult animals by disrupting clathrin-mediated endocytosis.


2009 ◽  
Vol 53 (2) ◽  
pp. 157-159 ◽  
Author(s):  
Young-Hoon Kim ◽  
Hyangkyu Lee ◽  
Tae-Yoon Kim ◽  
Hyang-Ran Hwang ◽  
Sang Chul Lee

Sign in / Sign up

Export Citation Format

Share Document