scholarly journals A Static Bioimpedance and Dynamic Acoustic Myography Preliminary Assessment of Low Frequency Therapeutic Ultrasound Treatment of the Shoulder Muscle Trapezius: An Equine Study

2021 ◽  
Vol 11 (04) ◽  
pp. 125-135
Author(s):  
Diane lsbell ◽  
Sebastian Laguna ◽  
Adrian Harrison
2017 ◽  
Vol 284 ◽  
pp. 92-99 ◽  
Author(s):  
M. Bellardita ◽  
H.A. El Nazer ◽  
V. Loddo ◽  
F. Parrino ◽  
A.M. Venezia ◽  
...  

2020 ◽  
Vol 6 (6) ◽  
pp. 453-460
Author(s):  
Michael W. Dae ◽  
Kathleen D. Liu ◽  
Richard J. Solomon ◽  
Dong W. Gao ◽  
Carol A. Stillson

<b><i>Introduction:</i></b> Post-contrast acute kidney injury (PC-AKI) develops in a significant proportion of patients with CKD after invasive cardiology procedures and is strongly associated with adverse outcomes. <b><i>Objective:</i></b> We sought to determine whether increased intrarenal nitric oxide (NO) would prevent PC-AKI. <b><i>Methods:</i></b> To create a large animal model of CKD, we infused 250 micron particles into the renal arteries in 56 ± 8 kg pigs. We used a low-frequency therapeutic ultrasound device (LOTUS – 29 kHz, 0.4 W/cm<sup>2</sup>) to induce NO release. NO and laser Doppler probes were used to assess changes in NO content and blood flow. Glomerular filtration rate (GFR) was measured by technetium-diethylene-triamine-pentaacetic acid (Tc-99m-DTPA) radionuclide imaging. PC-AKI was induced by intravenous infusion of 7 cm<sup>3</sup>/kg diatrizoate. In patients with CKD, we measured GFR at baseline and during LOTUS using Tc-99m--DTPA radionuclide imaging. <b><i>Results:</i></b> In the pig model, CKD developed over 4 weeks (serum creatinine [Cr], mg/dL, 1.0 ± 0.2–2.6 ± 0.9, <i>p</i> &#x3c; 0.01, <i>n</i> = 12). NO and renal blood flow (RBF) increased in cortex and medulla during LOTUS. GFR increased 75 ± 24% (<i>p</i> = 0.016, <i>n</i> = 3). PC-AKI developed following diatrizoate i.v. infusion (Cr 2.6 ± 0.7 baseline to 3.4 ± 0.6 at 24 h, <i>p</i> &#x3c; 0.01, <i>n</i> = 3). LOTUS (starting 15 min prior to contrast and lasting for 90 min) prevented PC-AKI in the same animals 1 week later (Cr 2.5 ± 0.4 baseline to 2.6 ± 0.7 at 24 h, <i>p</i> = ns, <i>n</i> = 3). In patients with CKD (<i>n</i> = 10), there was an overall 25% increase in GFR in response to LOTUS (<i>p</i> &#x3c; 0.01). <b><i>Conclusions:</i></b> LOTUS increased intrarenal NO, RBF, and GFR and prevented PC-AKI in a large animal model of CKD, and significantly increased GFR in patients with CKD. This novel approach may provide a noninvasive nonpharmacological means to prevent PC-AKI in high-risk patients.


2004 ◽  
Vol 29 (6) ◽  
pp. 743-757 ◽  
Author(s):  
William P.S. McKay ◽  
Philip D. Chilibeck ◽  
Karen E. Chad ◽  
Brian L.F. Daku

A number of mechanisms have been proposed for the elevation in oxygen consumption following exercise. Biochemical processes that return muscle to its preexercise state do not account for all the oxygen consumed after exercise. It is possible that mechanical activity in resting muscle, which produces low frequency vibrations (i.e., muscle sounds: mechano-myographic [MMG] activity), could contribute to the excess postexercise oxygen consumption. Therefore the purpose of this study was to determine whether the resting MMG amplitude changes after exercise, and whether the change is related to the elevation in oxygen consumption [Formula: see text] Ten young male subjects (22.9 yrs) performed 30 minutes of exercise on a cycle ergometer at an intensity corresponding to 70%peak [Formula: see text] Oxygen consumption was measured by indirect calorimetry, and MMG by an accelerometer placed over the mid-quadriceps before exercise and for 5.5 hours after exercise. MMG activity, expressed as mean absolute acceleration, was significantly elevated for the 5.5 hours of measurement after exercise (p <  0.05). MMG and [Formula: see text] decayed exponentially after exercise with time constants of 7.2 minutes and 7.4 minutes, respectively. We conclude that muscle is mechanically active following exercise and that this may contribute to an elevated [Formula: see text] Key words: excess postexercise oxygen consumption, muscle sounds, acoustic myography


Sign in / Sign up

Export Citation Format

Share Document