In-Cylinder Combustion Studies of Diesel-Compressed Natural Gas Dual Fuel with Increasing Energy Fraction and Its Effect on Emissions

2021 ◽  
Vol 15 (5) ◽  
Author(s):  
M. Muralidharan ◽  
Ajay Kumar ◽  
M. Subramanian
2021 ◽  
pp. 1-39
Author(s):  
Akash Chandrabhan Chandekar ◽  
Sushmita Deka ◽  
Biplab K. Debnath ◽  
Ramesh Babu Pallekonda

Abstract The persistent efforts among the researchers are being done to reduce emissions by the exploration of different alternative fuels. The application of alternative fuel is also found to influence engine vibration. The present study explores the potential connection between the change of the engine operating parameters and the engine vibration pattern. The objective is to analyse the effect of alternative fuel on engine vibration and performance. The experiments are performed on two different engines of single cylinder and twin-cylinder variants at the load range of 0 to 34Nm, with steps of 6.8Nm and at the constant speed of 1500rpm. The single cylinder engine, fuelled with only diesel mode, is tested at two compression ratios of 16.5 and 17.5. While, the twin-cylinder engine with a constant compression ratio of 16.5, is tested at both diesel unifuel and diesel-compressed natural gas dual-fuel modes. Further, in dual-fuel mode, tests are conducted with compressed natural gas substitutions of 40%, 60% and 80% for given loads and speed. The engine vibration signatures are measured in terms of root mean square acceleration, representing the amplitude of vibration. The combustion parameters considered are cylinder pressure, rate of pressure rise, heat release rate and ignition delay. At higher loads, the vibration amplitude increases along with the cylinder pressure. The maximum peak cylinder pressure of 95bar is found in the case of the single cylinder engine at the highest load condition that also produced a peak vibration of 3219m/s2.


Author(s):  
Liu Shenghua ◽  
Zhou Longbao ◽  
Wang Ziyan ◽  
Ren Jiang

The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NOx and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Abhishek Paul ◽  
Subrata Bhowmik ◽  
Rajsekhar Panua ◽  
Durbadal Debroy

The present study surveys the effects on performance and emission parameters of a partially modified single cylinder direct injection (DI) diesel engine fueled with diesohol blends under varying compressed natural gas (CNG) flowrates in dual fuel mode. Based on experimental data, an artificial intelligence (AI) specialized artificial neural network (ANN) model have been developed for predicting the output parameters, viz. brake thermal efficiency (Bth), brake-specific energy consumption (BSEC) along with emission characteristics such as oxides of nitrogen (NOx), unburned hydrocarbon (UBHC), carbon dioxide (CO2), and carbon monoxide (CO) emissions. Engine load, Ethanol share, and CNG strategies have been used as input parameters for the model. Among the tested models, the Levenberg–Marquardt feed-forward back propagation with three input neurons or nodes, two hidden layers with ten neurons in each layer and six output neurons, and tansig-purelin activation function have been found to the optimal model topology for the diesohol–CNG platforms. The statistical results acquired from the optimal network topology such as correlation coefficient (0.992–0.999), mean square error (MSE) (0.0001–0.0009), and mean absolute percentage error (MAPE) (0.09–2.41%) along with Nash–Sutcliffe coefficient of efficiency (NSE), Kling–Gupta efficiency (KGE), mean square relative error, and model uncertainty established itself as a real-time robust type machine learning tool under diesohol–CNG paradigms. The study also incorporated a special type of measure, namely Pearson's Chi-square test or goodness of fit, which brings up the model validation to a higher level.


2016 ◽  
Vol 22 (9) ◽  
pp. 2128-2132 ◽  
Author(s):  
Fathul Hakim Zulkifli ◽  
Muammar Mukhsin Ismail ◽  
Mas Fawzi ◽  
Shahrul Azmir Osman

Author(s):  
Liu Shenghua ◽  
Wang Ziyan ◽  
Ren Jiang

A natural gas and diesel dual-fuel turbocharged compression ignition (CI) engine is developed to reduce emissions of a heavy-duty diesel engine. The compressed natural gas (CNG) pressure regulator is specially designed to feed back the boost pressure to simplify the fuel metering system. The natural gas bypass improves the engine response to acceleration. The modes of diesel injection are set according to the engine operating conditions. The application of honeycomb mixers changes the flowrate shape of natural gas and reduces hydrocarbon (HC) emission under low-load and lowspeed conditions. The cylinder pressures of a CI engine fuelled with diesel and dual fuel are analysed. The introduction of natural gas makes the ignition delay change with engine load. Under the same operating conditions, the emissions of smoke and NOx from the dual-fuel engine are both reduced. The HC and CO emissions for the dual-fuel engine remain within the range of regulation.


2015 ◽  
Vol 773-774 ◽  
pp. 550-554 ◽  
Author(s):  
Fathul Hakim Zulkifli ◽  
Mas Fawzi ◽  
Shahrul Azmir Osman

The compressed natural gas (CNG) – diesel dual fuel engine is discussed through their basic operation and its characteristic. The main problem of running a diesel engine on dual fuel mode with CNG as main fuel is addressed. A brief review of knock phenomena which is widely associated with a dual fuel engine is also covered. Methods to suppress onset knock were suggested.


Sign in / Sign up

Export Citation Format

Share Document