Engine Performance and Exhaust Characteristics of Dual Fuel Operation in DI Diesel Engine with Methanol

Author(s):  
R. Udayakumar ◽  
S. Sundaram ◽  
K. Sivakumar
2019 ◽  
Vol 8 (4) ◽  
pp. 4048-4052

Biodiesel, a derivative of vegetable oils and animal fats, is used nowadays as an alternative renewable and sustainable fossil fuel. In this work, the investigation of manufacture, characterization, and results of biodiesel blends are carried out using two important feedstock’s, sunflower oil and ricebran oil on engines. For the collective advantageous of sunflower oil and ricebran oil, the two biodiesels are combined together and the mixture is analysed to assess the engine performance and emission characteristics. NaOH catalyzed transesterification process is used for producing the Biodiesels A 4.4 kW, four-stroke, single-cylinder and direct fuel injection diesel engine is used for measuring physic-chemical with full load and varying speed conditions and using the specifications of ASTM D6751 standard, the properties are compared. It is observed that the Biodiesel mixtures produce a low brake torque and high brake-specific fuel consumption (BSFC) in addition to the reduction of CO and HC emissions. NOx, however, is reduced considerably with the improvement of brake thermal efficiency. The Performance analysis indicates that the mixture of sunflower oil and ricebran oil improves performance and emission characterizes over sunflower oil and ricebran oil biodiesel when they are unmixed..


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4421 ◽  
Author(s):  
Karami ◽  
Rasul ◽  
Khan ◽  
Anwar

Biodiesel is an alternative fuel for diesel engine. Considering the differences between diesel and biodiesel fuels, the engine condition should be modified based on the fuel or fuel blends to achieve optimum performance. This study presented a performance analysis of a direct-injected (DI) diesel engine with a dynamometer fueled with diesel-tomato seed biodiesel (TSOB) blends employing ANOVA and universal nonlinear model based on ANN. The experiments were carried out under conditions of some independent variables including different engine loads (0, 50, 100%) and speed (1800, 2150, and 2500 rpm) for four diesel-biodiesel combinations (B0, B5, B10, and B20). In this research, the effect of these factors on dependent variables including power, torque, SFC, FC, and Exhaust Gas Temperature (EGT) are investigated. Duncan′s multi-domain test at a significance level of R < 0.01 shows that the highest and lowest of the torque and power are produced from B5 and B20, respectively. These results show that the lowest EGT of 613 K is related to B20 and the highest EGT is related to B5 and B10. The regression models showed that the torque decreases with increasing the engine speed and biodiesel percentage. These results also show that the highest and the lowest SFC is related to B0 and B20, respectively. The ANN model shows high capability of predicting the engine performance parameters and emissions, without running costly and time-consuming experiments with the histogram error of 0.004 and R = 0.96. It also proved that ANN is a non-linear model of choice to deal with these data, instead of multivariate linear regression employed for preliminary analysis.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5663 ◽  
Author(s):  
Mahantesh Marikatti ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
Y.H. Basavarajappa ◽  
Manzoore Elahi M Soudagar ◽  
...  

The present work is mapped to scrutinize the consequence of biodiesel and gaseous fuel properties, and their impact on compression-ignition (CI) engine combustion and emission characteristics in single and dual fuel operation. Biodiesel prepared from non-edible oil source derived from Thevetia peruviana belonging to the plant family of Apocynaceaeis. The fuel has been referred as methyl ester of Thevetia peruviana (METP) and adopted as pilot fuel for the effective combustion of compressed gaseous fuel of hydrogen. This investigation is an effort to augment the engine performance of a biodiesel-gaseous fueled diesel engine operated under varied engine parameters. Subsequently, consequences of gas flow rate, injection timing, gas entry type, and manifold gas injection on the modified dual-fuel engine using conventional mechanical fuel injections (CMFIS) for optimum engine performance were investigated. Fuel consumption, CO, UHC, and smoke formations are spotted to be less besides higher NOx emissions compared to CMFIS operation. The fuel burning features such as ignition delay, burning interval, and variation of pressure and heat release rates with crank angle are scrutinized and compared with base fuel. Sustained research in this direction can convey practical engine technology, concerning fuel combinations in the dual fuel mode, paving the way to alternatives which counter the continued fossil fuel utilization that has detrimental impacts on the climate.


2012 ◽  
Vol 614-615 ◽  
pp. 436-440
Author(s):  
Jia Yi Du ◽  
Hai Ling Li ◽  
Deng Pan Zhang ◽  
Yong Jia Lu

Based on Methanol and diesel special combustion mode, a control strategy of methanol/diesel dual fuel engine on turbocharged DI diesel engine was introduced according to different operation conditions. A method of judging engine load by measuring intake manifold pressure was put forward. Bicubic interpolation method was adopted to optimize the control MAP for ensuring the coincidence between look-up table data and actual conditions. The feasibility of the control strategy is verified by bench test. And the results of test show that the economic performance of this dual fuel engine got a considerable improvement.


Sign in / Sign up

Export Citation Format

Share Document