The Influences of Cylinder Liner Honing Patterns and Oil Control Ring Design Parameters on the Interaction between the Twinland Oil Control Ring and the Cylinder Liner in Internal Combustion Engines

Author(s):  
Haijie Chen ◽  
Tian Tian
2020 ◽  
Vol 10 (11) ◽  
pp. 3705
Author(s):  
Ahmad Alshwawra ◽  
Florian Pohlmann-Tasche ◽  
Frederik Stelljes ◽  
Friedrich Dinkelacker

Reducing friction is an important aspect to increase the efficiency of internal combustion engines (ICE). The majority of frictional losses in engines are related to both the piston skirt and piston ring–cylinder liner (PRCL) arrangement. We studied the enhancement of the conformation of the PRCL arrangement based on the assumption that a suitable conical liner in its cold state may deform into a liner with nearly straight parallel walls in the fired state due to the impact of mechanical and thermal stresses. Combining the initially conical shape with a noncircular cross section will bring the liner even closer to the perfect cylindrical shape in the fired state. Hence, a significant friction reduction can be expected. For the investigation, the numerical method was first developed to simulate the liner deformation with advanced finite element methods. This was validated with given experimental data of the deformation for a gasoline engine in its fired state. In the next step, initially conically and/or elliptically shaped liners were investigated for their deformation between the cold and fired state. It was found that, for liners being both conical and elliptical in their cold state, a significant increase of straightness, parallelism, and roundness was reached in the fired state. The combined elliptical-conical liner led to a reduced straightness error by more than 50% compared to the cylindrical liner. The parallelism error was reduced by 60% to 70% and the roundness error was reduced between 70% and 80% at different liner positions. These numerical results show interesting potential for the friction reduction in the piston-liner arrangement within internal combustion engines.


RSC Advances ◽  
2016 ◽  
Vol 6 (83) ◽  
pp. 79968-79970 ◽  
Author(s):  
Yufu Xu ◽  
Lulu Yao ◽  
Bin Zhang ◽  
Ka Tang ◽  
Bao Li ◽  
...  

The use of renewable bio-fuel in internal combustion engines is the trend for the near future.


Lubricants ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 89
Author(s):  
Chongjie Gu ◽  
Renze Wang ◽  
Tian Tian

In internal combustion engines, a significant portion of the total fuel energy is consumed to overcome the mechanical friction between the cylinder liner and the piston rings. The engine work loss through friction gradually reduces during the engine break-in period, as the result of liner surface topography changes caused by wear. This work is the first step toward the development of a physics-based liner wear model to predict the evolution of liner roughness and ring pack lubrication during the break-in period. Two major mechanisms are involved in the wear model: plastic deformation and asperity fatigue. The two mechanisms are simulated through a set of submodels, including elastoplastic asperity contact, crack initiation, and crack propagation within the contact stress field. Compared to experimental measurements, the calculated friction evolution of different liner surface finishes during break-in exhibits the same trend and a comparable magnitude. Moreover, the simulation results indicate that the liner wear rate or duration of break-in depends greatly on the roughness, which may provide guidance for surface roughness design and manufacturing processes.


Author(s):  
M. Yu. Polyanchikova ◽  
D. V. Selivanova ◽  
A. V. Kachalova ◽  
M. V. Nikitin

Both in the manufacture and repair of critical parts of mechanical engineering and engine building, great attention is paid to the formation of a trace on the surface, the surface layer quality and the geometric shape accuracy. However, methods of achieving high accuracy in the parts manufacture and their repair after operation differ significantly. The article assesses the possibility of implementing the honing method with a variable height speed of tool rotation (hon) patented by the author, and analyses the productivity of this method when repairing the internal combustion engines cylinder liner at a taper value of 0.20 mm.


2007 ◽  
Vol 18-19 ◽  
pp. 423-433
Author(s):  
John A. Akpobi ◽  
P. Oboh

This paper describes computer-aided-design software which accurately and efficiently designs internal combustion engine (I.C.) parts with the aid of Microsoft Visual Basic Object - oriented programming language. In addition to numerically outputting solutions (design parameters), the software also provides graphical solutions which facilitates easy visualization of trends in the variation of the solutions with important parameters. We then illustrate its accuracy and efficiency with some benchmark examples.


2019 ◽  
pp. 146808741989389 ◽  
Author(s):  
Ahmad Alshwawra ◽  
Henning Pasligh ◽  
Hauke Hansen ◽  
Friedrich Dinkelacker

Increasing the efficiency of internal combustion engines is of major interest for reduced greenhouse gas emission. A significant improvement potential is given with the reduction of friction losses. Here, especially the friction between the piston ring and the cylinder liner is of interest. This article describes a study with the target to enhance the piston ring–cylinder liner conformation through increasing the roundness of the deformed liner during the warm operation state. The approach is based on the assumption that a non-circular liner in the cold state can deform due to thermal and mechanical stresses toward a circular shape under typical hot operation conditions. To test this hypothesis, a computational model for a gasoline engine was built and simulated using advanced finite element methods. The simulation describes the deformation process of the liner from the thermal and mechanical stresses. First, the deformation of a circular liner is simulated, showing asymmetric deformations of up to 30 µm in the warm state for the cylinder positioned at the end of the four-cylinder bank. As experimental data are readily available, a comparison was possible, showing good agreement. Then, three liner configurations with non-circular shape in the cold stage are investigated. For an elliptically shaped configuration, a nearly circular-shaped liner is reached under typical operation conditions. This numerical approach shows the potential for reduced friction of the piston–liner arrangement within internal combustion engines. The planned next step is the extension of this method to three-dimensional shape aspects and the application to the geometry of our test engine of our lab where friction can be measured in detail with a floating-liner measurement system.


Sign in / Sign up

Export Citation Format

Share Document