IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

Author(s):  
Yosuke Osanai ◽  
Masaki Wasekura ◽  
Hideo Yamawaki ◽  
Yusuke Shindo
2017 ◽  
Vol 6 (2) ◽  
pp. 303-308 ◽  
Author(s):  
Keisuke Kimura ◽  
Tasbir Rahman ◽  
Tadashi Misumi ◽  
Takeshi Fukami ◽  
Masafumi Hara ◽  
...  

Author(s):  
G. Georgiev ◽  
I. Zicmane ◽  
E. Antonov

Finding of the rational approach at the decision of a compensation in high-voltage networksThe aim of the present work is to find a computational model, sufficiently simplified for practical use which determines the sensitivity of the complex high-voltage electrical networks when switching compensatory powers. We show how this model can be used as a basis for creating practical criteria for a one-valued choice in the two situations. First, switching the compensatory power does not lead to leaving the permissible range of voltage. In this case the power which minimizes the power losses is used. Second, the compensatory power is switched in order to return the voltage to the permissible range. Then that compensatory medium is chosen which is sensitive enough in addition to causing the minimal increase in electrical power losses.


Author(s):  
Carlo Joseph Makdisie ◽  
Marah Fadl Mariam

Most of the electric machines had a conventional design for speed –control. Previously, the speed regulation of these motors was done via traditional or mechanical contacts, for example: inserting resistors to the armature circuit or controlling the excited circuit of DC motor, and other methods of control. These classical methods, however, lead to non-linearity in mechanical or electromechanical characteristics [ω= f(M) or ω= f(I)], which in turn lead to increased power losses as the result of the non-soft regulation of speed, as well as the great inertia of classical control methods that rely on mechanical and electromagnetic devices.


2019 ◽  
Vol 11 (2) ◽  
pp. 149-159
Author(s):  
Ibnu Hajar ◽  
Tito Dias Fernando

PT. PLN (PERSERO) as a state-owned company responsible in the electricity sector is required to improve the quality of electricity transmission. In the transmission of electrical power to consumers will be got losses of power. Raising the voltage is an alternative to this problem but it creates new problems because the higher the voltage has increased the corona will occur. The impact of the corona in addition to damaging equipment, noise, and disturbing radio waves, the corona also causes power losses that are proportional to the length of the transmission line. This study uses a quantitative method, by calculating the corona power losses by comparing 4 different cross-sectional areas of the conductor and 4 different air temperatures. The results of this study found that the smaller the cross-sectional area of the conductor the power losses due to corona are smaller, conversely the greater the cross-sectional area the greater the power losses. At the smallest cross-sectional area of 282.6 mm2, the power losses that occurred were 2.013% and at the largest cross-sectional area of 378.7 mm2, the power losses were 5.251%. While the influence of air temperature, the lowest corona losses occur at 29 0C which are 1,223,886 kW and the biggest occur at 24 0C which are 1,373,419 kW, so the higher the air temperature the smaller the corona losses, conversely the lower the air temperature than the higher the corona losses that occur.


The electrical power generation from solar photo voltaic arrays increases by reducing partial shading effect due to the deposition of dust in modules, shadow of nearby buildings, cloud coverage leads to mismatching power losses. This paper gives the detailed analysis of modeling, simulation and performance analysis of different 4x4 size PV array topologies under different irradiance levels and to extract output power of panels maximum by reducing the mismatching power losses. For this analysis, a comparative study of six PV array topologies are Series, Parallel, Series-Parallel, Total-Cross-Tied, Bridge Linked and Honey-Comb are considered under various shading conditions such as one module shading, one string shading, zigzag type partial shading and total PV array partially shaded cases. The performance of above six topologies are compare with mismatching power losses and fill-factor. For designing and simulation of different PV array configurations/topologies in MaTLab/Simulink, the LG Electronics LG215P1W PV module parameters are used in all PV modules.


2020 ◽  
Vol 2020 (3) ◽  
pp. 65-70
Author(s):  
A Burhanhodjaev ◽  
◽  
U Berdiev ◽  
E Iksar ◽  
C Kayumov

The article discusses the improvement of traction and energy performance main-line locomotives due to more complete use of possibilities of flexible microprocessor control and efficient algorithm that provides reduction of electrical losses in the traction asynchronous drive over the entire range working capacity. In the best way for a promising loco is tract with using a traction asynchronous drive. Such kind of tract drives allow completely use of the coupling mass of loco compares with collector track drive, due to the absence of a collector it is possible to increase the active length of the rotor and high reliability which makes it possible to realize increased axial power


Author(s):  
B. R. Nichols ◽  
P. E. Allaire ◽  
T. Dimond ◽  
J. Cao ◽  
S. Dousti

Active magnetic bearings (AMBs) have the well-documented advantage of reduced operational power losses when compared to conventional fluid-film bearings; however, they have yet to be widely adopted in industry due to the high initial costs of manufacturing and supporting power electronics. As AMBs look to become more cost competitive in more widely based applications, permanent magnet biased designs seek to reduce both the operating electrical power losses and the power electronic hardware costs while maintaining normal load and maximum load capacities. In these new designs, permanent magnet components are used to provide the necessary bias magnetic flux in the bearing usually provided by an electrical bias current in traditional all electromagnetic AMB designs. By eliminating electrical bias currents, operating electrical power losses can be significantly reduced while allowing for smaller, cheaper electronic components. This paper provides a comparison of the performance of permanent magnet biased thrust and radial bearing designs with conventional, all electromagnetic bearing designs. The thrust bearings are designed with nominal and maximum load capacities of 1,333 N and 4,000 N, while the radial bearings are designed with nominal and maximum load capacities of 1,000 N and 3,000 N. The shaft diameter is considered to be 70 mm for all bearings. Finite element modeling is used to calculate load capacities and operating electrical power requirements. Power requirements for a number of loads ranging from nominal to maximum capacity are presented for the permanent magnet biased and all electromagnetic bearing designs. A significant reduction in electrical power requirements under maximum load conditions is shown in the permanent magnet biased designs. This reduction is further magnified under nominal load conditions. Additionally, the number of pole wire turns and maximum wire currents are adjusted to realize even greater electrical power losses. The required bias magnetic flux can be generated with reduced wire currents by increasing the number of wire turns. While reducing wire currents also reduces electrical power requirements, the increase in wire turns increases the circuit induction. This increase in induction decreases the bearing slew rate and, in turn, the bandwidth. This study looks at a number of wire turns and current combinations. Tradeoffs between reduced electrical power losses and bearing bandwidth are presented and discussed. The permanent magnet biased AMB designs are shown to significantly reduce electrical power losses having the potential to improve overall machine efficiency. Implications of adopting this technology to both operating and manufacturing costs are discussed. The use of permanent magnets in AMBs is shown to make the costs of these systems more competitive with oil lubricated bearings when compared to conventional AMB designs.


Sign in / Sign up

Export Citation Format

Share Document