Improvement on Energy Efficiency of the Spark Ignition System

Author(s):  
Xiao Yu ◽  
Shui Yu ◽  
Zhenyi Yang ◽  
Qingyuan Tan ◽  
Mark Ives ◽  
...  
2021 ◽  
Vol 232 ◽  
pp. 111561
Author(s):  
Rajavasanth Rajasegar ◽  
Yoichi Niki ◽  
Jose Maria García-Oliver ◽  
Zheming Li ◽  
Mark P.B. Musculus

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7037
Author(s):  
Donatas Kriaučiūnas ◽  
Tadas Žvirblis ◽  
Kristina Kilikevičienė ◽  
Artūras Kilikevičius ◽  
Jonas Matijošius ◽  
...  

Biogas has increasingly been used as an alternative to fossil fuels in the world due to a number of factors, including the availability of raw materials, extensive resources, relatively cheap production and sufficient energy efficiency in internal combustion engines. Tightening environmental and renewable energy requirements create excellent prospects for biogas (BG) as a fuel. A study was conducted on a 1.6-L spark ignition (SI) engine (HR16DE), testing simulated biogas with different methane and carbon dioxide contents (100CH4, 80CH4_20CO2, 60CH4_40CO2, and 50CH4_50CO2) as fuel. The rate of heat release (ROHR) was calculated for each fuel. Vibration acceleration time, sound pressure and spectrum characteristics were also analyzed. The results of the study revealed which vibration of the engine correlates with combustion intensity, which is directly related to the main measure of engine energy efficiency—break thermal efficiency (BTE). Increasing vibrations have a negative correlation with carbon monoxide (CO) and hydrocarbon (HC) emissions, but a positive correlation with nitrogen oxide (NOx) emissions. Sound pressure also relates to the combustion process, but, in contrast to vibration, had a negative correlation with BTE and NOx, and a positive correlation with emissions of incomplete combustion products (CO, HC).


2015 ◽  
Vol 81 ◽  
pp. 897-906 ◽  
Author(s):  
Claudio Forte ◽  
Gian Marco Bianchi ◽  
Enrico Corti ◽  
Stefano Fantoni

Author(s):  
Azer P. Yalin ◽  
Morgan W. Defoort ◽  
Sachin Joshi ◽  
Daniel Olsen ◽  
Bryan Willson ◽  
...  

A practical impediment to implementation of laser ignition systems has been the open-path beam delivery used in past research. In this contribution, we present the development and implementation of a fiber-optically delivery laser spark ignition system. To our knowledge, the work represents the first demonstration of fiber coupled laser ignition (using a remote laser source) of a natural gas engine. A Nd:YAG laser is used as the energy source and a coated hollow fiber is used for beam energy delivery. The system was implemented on a single-cylinder of a Waukesha VGF 18 turbo charged natural gas engine and yielded consistent and reliable ignition. In addition to presenting the design and testing of the fiber delivered laser ignition system, we present initial design concepts for a multiplexer to ignite multiple cylinders using a single laser source, and integrated optical diagnostic approaches to monitor the spark ignition and combustion performance.


2019 ◽  
Vol 179 (4) ◽  
pp. 86-92
Author(s):  
Mieczysław DZIUBIŃSKI ◽  
Ewa SIEMIONEK ◽  
Artur DROZD ◽  
Michał ŚCIRKA ◽  
Adam KISZCZAK ◽  
...  

The article discusses the impact of ignition system damage on the emission of toxic subcategories in a spark-ignition internal combustion engine. The aim of the work was to develop an analytical model of ignition system diagnostics, test performance and comparative analysis of the results of simulations and experiments. The model developed allows to analyse the basic parameters of the ignition system affecting the content of toxic substances in the exhaust. Experimental tests were carried out using the MAHA MGT5 exhaust gas analyser for four different combustion engines fueled with petrol at various operating conditions. During the tests, the content of toxic substances in the exhaust gas of a properly working engine and the engine working with damage to the ignition system were registered. The tests will be used to assess the impact of the damage of the spark-ignition engine on the emission of individual components of toxic fumes.


Author(s):  
Haiwen Ge ◽  
Peng Zhao

In the present paper, a comprehensive ignition system model (VTF ignition model) accounting for the practical module and working mechanism of a spark plug was developed, aiming to provide enhanced capability for the 3D combustion simulation of spark ignition engines. In this model, an electrical circuitry model is used to represent the ignition coil, spark plug, and air column. The air column is represented by a set of Lagrangian particles that move with the local flow field. Flame propagation is directly calculated using SAGE model with a reduced isooctane reaction mechanism. The new ignition system model is further implemented into CONVERGE through user defined functions and is verified by comparing with the conventional DPIK model. It is found that the VTF ignition model predicts slower combustion than the DPIK model, mainly due to more realistic energy deposit method and energy discharging rate. Furthermore, the VTF model also has the capability of predicting the arc motion and restrike phenomena associated with spark ignition processes. It is expected that with more validation with experiments, the new VTF model has the great potential to better serve the needs of engine combustion simulation.


Sign in / Sign up

Export Citation Format

Share Document