Efficiency Improvement of Boosted Low-Temperature Gasoline Combustion Engines (LTGC) Using a Double Direct-Injection Strategy

Author(s):  
Jeremie Dernotte ◽  
John Dec ◽  
Chunsheng Ji
2020 ◽  
pp. 146808742092104
Author(s):  
Priya Priyadarshini ◽  
Aimilios Sofianopoulos ◽  
Sotirios Mamalis ◽  
Benjamin Lawler ◽  
Dario Lopez-Pintor ◽  
...  

The development of gasoline compression ignition engines operating in a low temperature combustion mode depends heavily on robust control of the heat release profile. Partial fuel stratification is an effective method for controlling the heat release by creating a stratified mixture prior to autoignition, which can be beneficial for operation across a wide load range. In this study, three-dimensional large eddy simulations were used to model a double direct injection strategy for which 80% of the fuel was injected during the intake stroke, and 20% of the fuel was injected at varying timing during the compression stroke. The simulations replicated a set of experiments performed at Sandia National Laboratories on a 1-L single-cylinder research engine using E10 gasoline (gasoline fuel containing 10% vol. ethanol). The objective of this study is to analyze the effects of the double direct injection strategy on the compositional and thermal stratification of the mixture, and understand the best use of this operating strategy. The modeling results indicated that by retarding the start of the second injection, the mixture stratification increases, which can be used to control the autoignition timing and the combustion phasing. Ignition and CA50 (crank angle of 50% mass fraction burned) are dictated by the mass concentration of the richest zones in the combustion chamber, as well as their location. The richer zones have the lowest temperatures before ignition primarily due to evaporative cooling from direct fuel injection. Overall, this study enhances the understanding of partial fuel stratification that can be used for controlling the heat release in gasoline compression ignition engines.


MTZ worldwide ◽  
2021 ◽  
Vol 82 (7-8) ◽  
pp. 42-45
Author(s):  
Bernhard Bobusch ◽  
Thomas Ebert ◽  
Anja Fink ◽  
Oliver Nett

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing Nan ◽  
Qiang Fu ◽  
Jing Yu ◽  
Miao Shu ◽  
Lu-Lu Zhou ◽  
...  

AbstractAs the technology development, the future advanced combustion engines must be designed to perform at a low temperature. Thus, it is a great challenge to synthesize high active and stable catalysts to resolve exhaust below 100 °C. Here, we report that bismuth as a dopant is added to form platinum-bismuth cluster on silica for CO oxidation. The highly reducible oxygen species provided by surface metal-oxide (M-O) interface could be activated by CO at low temperature (~50 °C) with a high CO2 production rate of 487 μmolCO2·gPt−1·s−1 at 110 °C. Experiment data combined with density functional calculation (DFT) results demonstrate that Pt cluster with surface Pt−O−Bi structure is the active site for CO oxidation via providing moderate CO adsorption and activating CO molecules with electron transformation between platinum atom and carbon monoxide. These findings provide a unique and general approach towards design of potential excellent performance catalysts for redox reaction.


2017 ◽  
Vol 9 (34) ◽  
pp. 5023-5028 ◽  
Author(s):  
Sandra Martínez-Jarquín ◽  
Abigail Moreno-Pedraza ◽  
Daniel Cázarez-García ◽  
Robert Winkler

Tequila and mezcal are Mexican spirits prepared fromAgaveplants.


2014 ◽  
Vol 28 (7) ◽  
pp. 4342-4354 ◽  
Author(s):  
Kelli Rankin ◽  
Bradley Nguyen ◽  
Johan van Dorp ◽  
Marco Verlaan ◽  
Orlando Castellanos-Diaz ◽  
...  

Author(s):  
Lu Qiu ◽  
Rolf D. Reitz

Condensation of gaseous fuel is investigated in a low temperature combustion engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng-Robinson equation of state and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections, when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter and unburned hydrocarbons.


Sign in / Sign up

Export Citation Format

Share Document