scholarly journals PHEV Real World Driving Cycle Energy and Fuel and Consumption Reduction Potential for Connected and Automated Vehicles

Author(s):  
Darrell Robinette ◽  
Eric Kostreva ◽  
Alexandra Krisztian ◽  
Anthony Lackey ◽  
Christopher Morgan ◽  
...  
Author(s):  
Meng Lyu ◽  
Xiaofeng Bao ◽  
Yunjing Wang ◽  
Ronald Matthews

Vehicle emissions standards and regulations remain weak in high-altitude regions. In this study, vehicle emissions from both the New European Driving Cycle and the Worldwide harmonized Light-duty driving Test Cycle were analyzed by employing on-road test data collected from typical roads in a high-altitude city. On-road measurements were conducted on five light-duty vehicles using a portable emissions measurement system. The certification cycle parameters were synthesized from real-world driving data using the vehicle specific power methodology. The analysis revealed that under real-world driving conditions, all emissions were generally higher than the estimated values for both the New European Driving Cycle and Worldwide harmonized Light-duty driving Test Cycle. Concerning emissions standards, more CO, NOx, and hydrocarbons were emitted by China 3 vehicles than by China 4 vehicles, whereas the CO2 emissions exhibited interesting trends with vehicle displacement and emissions standards. These results have potential implications for policymakers in regard to vehicle emissions management and control strategies aimed at emissions reduction, fleet inspection, and maintenance programs.


Author(s):  
Ismail Zohdy ◽  
Raj Kamalanathsharma ◽  
Sudharson Sundararajan ◽  
Ram Kandarpa

Author(s):  
Masilamani Sithananthan ◽  
Ravindra Kumar

This paper proposed a framework for development of real-world driving cycle in India after a thorough review and comparison of motorcycle driving cycles used in different countries. A limited state-of-the art work for the development of driving cycles for motorcycles is available. The motorcycle driving cycles developed by different countries differ from each other in terms of their driving cycle characteristics, emission factors, and fuel economy. This paper reviewed the parameters of real-world driving cycles of motorcycles and compares the same with legislative cycles concerning their characteristics and emissions. The parameters of real-world driving cycles and Indian legislative cycle (IDC) deviate significantly from other legislative cycles in the range of −97% to +1172% and −74% to 284% respectively. The emission factors of the legislative cycle do not match with the realistic emissions measured by real-world driving cycles. This is due to the reason that the legislative cycles do not represent the current traffic scenario and hence need to be revised. A framework is proposed to develop a real-world driving cycle in India.


Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121979
Author(s):  
Matheus H.R. Miranda ◽  
Fabrício L. Silva ◽  
Maria A.M. Lourenço ◽  
Jony J. Eckert ◽  
Ludmila C.A. Silva

10.29007/1p2d ◽  
2019 ◽  
Author(s):  
Moritz Klischat ◽  
Octav Dragoi ◽  
Mostafa Eissa ◽  
Matthias Althoff

Testing motion planning algorithms for automated vehicles in realistic simulation environments accelerates their development compared to performing real-world test drives only. In this work, we combine the open-source microscopic traffic simulator SUMO with our software framework CommonRoad to test motion planning of automated vehicles. Since SUMO is not originally designed for simulating automated vehicles, we present an inter- face for exchanging the trajectories of vehicles controlled by a motion planner and the trajectories of other traffic participants between SUMO and CommonRoad. Furthermore, we ensure realistic dynamic behavior of other traffic participants by extending the lane changing model in SUMO to implement more realistic lateral dynamics. We demonstrate our SUMO interface with a highway scenario.


Sign in / Sign up

Export Citation Format

Share Document