Development of a new method to measure the rotational force acting on the piston rings of a gasoline engine

2019 ◽  
Author(s):  
Kenta Tomizawa ◽  
Akemi Ito
Author(s):  
Yankun Jiang ◽  
Zhien Liu ◽  
Rolf D. Reitz ◽  
Zheling Dong ◽  
Xiaoming Ye

A transient heat transfer model for the coupling 3-D moving piston assembly-liner system has been successfully improved for predicting temperature distributions in the components of internal combustion engine chamber. In the model the effect of the 3-D friction heat generated at the piston ring/cylinder liner interfaces and the multi-dimensional lubricant film thickness between the piston rings and the liner has been taken into account. A directly coupled finite element method (FEM) is employed in the model for establishing the heat transfer relation among the moving piston assembly-cylinder liner components. A 3-D discrete model of the coupling system is formulated, which includes the piston rings, piston, liner and cylinder. Due to the complexity of the temperature stiffness matrix, a sparse matrix data structure is employed in the model to save the memory and calculation time. Finally, the 3-D coupling heat transfer model has been used to analyze heat transfer processes in a gasoline engine.


Author(s):  
H H Masjuki ◽  
M A Maleque

Results of study on wear of piston rings, engine performance and exhaust gas emissions of palm oil methyl ester (POME) as a lubricating oil additive in a two-stroke gasoline engine test are presented. Piston ring wear behaviour was monitored as a function of running time. The power output and brake specific fuel consumption of the engine were measured at different speeds. Varnish/lacquer and carbon deposit on the spark plug electrode, cylinder and piston heads as well as exhaust gas (CO2, CO and O2) emission were measured. For comparison purposes, two types of commercial lubricating oils, viz. oil A and oil B were used. The wear resistance of piston rings with POME blending lubrication was found to be greater than the pure commercial oil lubrication. Other results indicate that the POME acts as an additive which improves the engine performance and exhaust emissions of two-stroke gasoline engines.


Author(s):  
Kenta Tomizawa ◽  
Akemi Ito

Abstract Oil consumption of an engine causes particulate matter, poisoning catalysts and sometimes abnormal combustion like pre-ignition. One of the factors of oil consumption is oil transport via a piston ring-gap. Coincident of ring-gaps at a same position may cause an increase in oil consumption. In this research, the effect of coincident the ring gaps on oil consumption was measured using with/without the a stopper pin for the ring rotation by sulfur tracer method. A lot of spikes was found in the wave form of sulfur concentrate for the rings without the stopper pin, and higher value of oil consumption was simultaneously measured. Then the force which caused ring rotation (hereafter ‘rotational force’) was measured by a newly developed method. A cantilever was installed in the ring gap, and the strain gauges were pasted on the cantilever. Therefore, the rotational force was measured as the bending stress of the cantilever. It was found that the rotational force showed a periodic wave form against the crank angle. Furthermore, it was also found that the amplitude of the rotational force was strong affected by the engine operating conditions. The rotational force was also affected by the gap position. It was assumed that not only the piston lateral motion but also the cylinder bore shape affected the rotational force. The mechanism of generating the rotational force is the future subject.


2012 ◽  
Vol 538-541 ◽  
pp. 3008-3011
Author(s):  
Yong Qing Lian ◽  
Qin Chao Xu ◽  
De Kui Ren

The air-powered swashplate engine is different from the oil-free compressor in working principle and mechanism. In order to predict the life of the oil-free piston rings of the engine , a new method is put forward, and is used to the life prediction of the rings. The results shows that the oil-free piston rings which is designed for the air-powered swashplate engine are feasible .


Author(s):  
C. C. Clawson ◽  
L. W. Anderson ◽  
R. A. Good

Investigations which require electron microscope examination of a few specific areas of non-homogeneous tissues make random sampling of small blocks an inefficient and unrewarding procedure. Therefore, several investigators have devised methods which allow obtaining sample blocks for electron microscopy from region of tissue previously identified by light microscopy of present here techniques which make possible: 1) sampling tissue for electron microscopy from selected areas previously identified by light microscopy of relatively large pieces of tissue; 2) dehydration and embedding large numbers of individually identified blocks while keeping each one separate; 3) a new method of maintaining specific orientation of blocks during embedding; 4) special light microscopic staining or fluorescent procedures and electron microscopy on immediately adjacent small areas of tissue.


Sign in / Sign up

Export Citation Format

Share Document