Combustion Behaviour of Blends of Synthetic Fuels in an Optical Single Cylinder Engine

2021 ◽  
Author(s):  
Jose V. Pastor ◽  
Jose M Garcia-Oliver ◽  
Carlos Micó ◽  
Francisco J. Tejada
Author(s):  
John L. Lahti ◽  
Matthew W. Snyder ◽  
John J. Moskwa

A transient test system was developed for a single cylinder research engine that greatly improves test accuracy by allowing the single cylinder to operate as though it were part of a multi-cylinder engine. The system contains two unique test components: a high bandwidth transient hydrostatic dynamometer, and an intake airflow simulator. The high bandwidth dynamometer is used to produce a speed trajectory for the single cylinder engine that is equivalent to that produced by a multi-cylinder engine. The dynamometer has high torque capacity and low inertia allowing it to simulate the speed ripple of a multi-cylinder engine while the single cylinder engine is firing. Hardware in loop models of the drivetrain and other components can be used to test the engine as though it were part of a complete vehicle, allowing standardized emissions tests to be run. The intake airflow simulator is a specialized intake manifold that uses solenoid air valves and a vacuum pump to draw air from the manifold plenum in a manner that simulates flow to other engine cylinders, which are not present in the single cylinder test configuration. By regulating this flow from the intake manifold, the pressure in the manifold and the flow through the induction system are nearly identical to that of the multi-cylinder application. The intake airflow simulator allows the intake runner wave dynamics to be more representative of the intended multi-cylinder application because the appropriate pressure trajectory is maintained in the intake manifold plenum throughout the engine cycle. The system is ideally suited for engine control development because an actual engine cylinder is used along with a test system capable of generating a wide range of transient test conditions. The ability to perform transient tests with a single cylinder engine may open up new areas of research exploring combustion and flow under transient conditions. The system can also be used for testing the engine under conditions such as cylinder deactivation, fuel cut-off, and engine restart. The improved rotational dynamics and improved intake manifold dynamics of the test system allow the single cylinder engine to be used for control development and emissions testing early in the engine development process. This can reduce development time and cost because it allows hardware problems to be identified before building more expensive multi-cylinder engines.


2004 ◽  
Author(s):  
Michael McMillian ◽  
Steven Richardson ◽  
Steven D. Woodruff ◽  
Dustin McIntyre

2021 ◽  
pp. 1-39
Author(s):  
Akash Chandrabhan Chandekar ◽  
Sushmita Deka ◽  
Biplab K. Debnath ◽  
Ramesh Babu Pallekonda

Abstract The persistent efforts among the researchers are being done to reduce emissions by the exploration of different alternative fuels. The application of alternative fuel is also found to influence engine vibration. The present study explores the potential connection between the change of the engine operating parameters and the engine vibration pattern. The objective is to analyse the effect of alternative fuel on engine vibration and performance. The experiments are performed on two different engines of single cylinder and twin-cylinder variants at the load range of 0 to 34Nm, with steps of 6.8Nm and at the constant speed of 1500rpm. The single cylinder engine, fuelled with only diesel mode, is tested at two compression ratios of 16.5 and 17.5. While, the twin-cylinder engine with a constant compression ratio of 16.5, is tested at both diesel unifuel and diesel-compressed natural gas dual-fuel modes. Further, in dual-fuel mode, tests are conducted with compressed natural gas substitutions of 40%, 60% and 80% for given loads and speed. The engine vibration signatures are measured in terms of root mean square acceleration, representing the amplitude of vibration. The combustion parameters considered are cylinder pressure, rate of pressure rise, heat release rate and ignition delay. At higher loads, the vibration amplitude increases along with the cylinder pressure. The maximum peak cylinder pressure of 95bar is found in the case of the single cylinder engine at the highest load condition that also produced a peak vibration of 3219m/s2.


2021 ◽  
Author(s):  
Sebastian Blochum ◽  
Fabian H. Ruch ◽  
Thomas Bastuck ◽  
Martin Härtl ◽  
Richard Mittler ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3694
Author(s):  
Chuanxue Song ◽  
Gangpu Yu ◽  
Shuai Yang ◽  
Ruoli Yang ◽  
Yi Sun ◽  
...  

This article summarises the development and experience of the Formula Student race car engine from 2018. According to the technical rules of Formula Student after the change in 2017, this engine adopts a new design concept, employs a 690-mL single-cylinder engine as the base, and applies ‘response enhancement technology’ with supercharging as the core to achieve a high-power output, a wide high-torque range and an excellent response capability. During the development, various studies on the dynamic performance of the vehicle and the engine were conducted, including vehicle dynamics analysis and track simulation, parameter matching of the supercharger and the engine, control strategy design, and the intake and exhaust system design. This research builds a supercharger air flow and efficiency test bench and an engine performance test bench. Test results show that the developed engine can output 122% of the original power and 120% of the original torque with a 20-mm diameter intake restrictor. Compared with previous generation race cars with a turbocharged four-cylinder engine, the new race car‘s 0–100 km/h acceleration time is shortened by 0.2 s, the torque response time under typical condition is shortened by 80%, and the lap time of the integrated circuit is reduced by 7%.


Sign in / Sign up

Export Citation Format

Share Document