High Speed Pumps for Gas Turbine Engines

1969 ◽  
Author(s):  
J. F. Murray
2021 ◽  
pp. 82-85
Author(s):  
A.S. Politov ◽  
R.R. Latypov

The comparative studies results of the durability of cutting properties of new and restored by regrinding and repeated plasma hardening with the application of multi-layer Si—O—C—N nanocoating system (PECVD by cold atmospheric plasma) powder high — speed steels broaches teeth for the processing of hard-to-process materials profilecomposite gas-turbine engines components are presented.


1979 ◽  
Author(s):  
S. M. Kowleski ◽  
C. D. Harrington

This paper describes the planning, developmental, equipment selection and operational problem phases of the high-speed ferry system presently being operated on San Francisco Bay by the Golden Gate Bridge, Highway and Transportation District. The reasons for the selection of the vessel propulsion package consisting of gas turbine engines and waterjet pumps are discussed in some detail. Most importantly, the paper covers the problems experienced to date with this equipment in continuous marine operation.


Author(s):  
Nanahisa Sugiyama

This paper describes a real-time or faster-than-real-time simulation of gas turbine engines, using an ultra high speed, multi-processor digital computer, designated the AD100. It is shown that the frame time is reduced significantly without any loss of fidelity of a simulation. The simulation program is aimed at a high degree of flexibility to allow changes in engine configuration. This makes it possible to simulate various types of gas turbine engines, including jet engines, gas turbines for vehicles and power plants, in real-time. Some simulation results for an intercooled-reheat type industrial gas turbine are shown.


2021 ◽  
Vol 156 (A2) ◽  
Author(s):  
J Sinay ◽  
A Tompos ◽  
M Puskar ◽  
V Petkova

This article addresses the issue of diagnostics and maintenance of Gas Turbine Engines which are located in high Speed Ferries, Cruisers, Frigates, Corvettes, etc. Assurance of reliable operation can be performed only by using correct diagnostic methods and procedures of monitoring the condition of the devices and by selecting the correct strategy of maintenance. The issue of monitoring the technical condition of Gas Turbine Engines is treated through multiparametric methods of technical diagnostics incorporated into predictive maintenance, which is a part of proactive maintenance. There are methods of vibrodiagnostics, thermography, tribology, borescopy and emissions measurement. Each of these methods has lots of advantages and disadvantages; therefore it is very important to ensure their correct combination for trouble-free operation of those important facilities. Their suitability at work is discussed in the matrix of diagnostic methods application and the PF chart. The output of the work is a proposal of a suitable model of maintenance control which uses multiparametric diagnostic methods for small and big Gas Turbine Engines and optimizes maintenance costs.


Author(s):  
Cyril Defaye ◽  
Daniel Nelias ◽  
Florence Bon

For high-precision mechanical systems such as gas-turbine engines, which operate under extreme conditions, it is particularly important to accurately predict the behavior of the mainshaft rolling bearings. This prediction includes, among others, the load distribution, stiffness and power dissipation. Although shaft speeds tend to increase, rings and shaft walls are becoming thinner due to size and weight constraints. Thus, bearing behavior is no longer independent of the housing and ring stiffness. Furthermore, since forty years, the use of squeeze film damper is largely widespread in gas-turbine engines to significantly reduce the vibratory levels. Due to the flexibility of the ring providing the interface between the roller bearing and the fluid film, it appears an elastic coupling which modifies the behavior of the bearing-squeeze film damper system. This paper presents first a squeeze film damper model with a flexible inner ring (i.e. outer ring of the roller bearing). An analytical stop model is introduced to reproduce the interference between the inner ring of the squeeze film damper and its housing. In a second part, an elastic coupling between the presented squeeze film damper model and an existing roller bearing model is proposed. Finally, the results presented show that this coupling has a first order influence on the behavior of the bearing-squeeze film damper system. It is also shown that the coupling between a roller bearing and a squeeze film damper when linked by a flexible ring introduces a dissymmetry of the load distribution with respect to the applied load direction. Moreover, in certain cases, the position of the bearing in its housing can reach eccentricities larger than the radial clearance of the squeeze film damper.


Author(s):  
James Rand ◽  
Nigel Wright

The Royal Navy (RN) has in-service experience of both marinised industrial and aero derivative propulsion gas turbines since the late 1940’s. Operating through a Memorandum of Understanding (MOU) between the British, Dutch, French and Belgian Navies the current in-service propulsion engines are marinised versions of the Rolls Royce Tyne, Olympus and Spey aero engines. Future gas turbine engines, for the Royal Navy, are expected to be the WR21 (24.5 MW), a 5 to 8 MW engine and a 1 to 2 MW engine in support of the All Electric Ship Project. This paper will detail why the Royal Navy chose gas turbines as prime movers for warships and how Original Equipment Manufacturers (OEM) guidance has been evaluated and developed in order to extend engine life. It will examine how the fleet of engines has historically been provisioned for and how a modular engine concept has allowed less support provisioning. The paper will detail the planned utilisation of advanced cycle gas turbines with their inherent higher thermal efficiency and environmental compliance and the case for all electric propulsion utilising high speed gas turbine alternators. It will examine the need for greater reliability / availability allowing single generator operation at sea and how by using a family of 3 engines a nearly flat Specific Fuel Consumption (SFC) down to harbour loads can be achieved.


Sign in / Sign up

Export Citation Format

Share Document