Frontal Crash Characteristics of Compact Car at a High Speed Collision

1998 ◽  
Author(s):  
Kazunari Mogami ◽  
Kenshi Fujiwara ◽  
Hiroki Yamamoto ◽  
Yasumi Itho ◽  
Masami Kubota ◽  
...  
2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Mustafa Elkady ◽  
Ahmed Elmarakbi

AbstractThe behaviour of a vehicle at high-speed crashes is enhanced by using active vehicle dynamics control systems. A 6-Degree-of-Freedom (6-DOF) mathematical model is developed to carry out this study. In this model, vehicle dynamics is studied together with vehicle crash structural dynamics. Validation of the vehicle crash structure of the proposed model is achieved to ensure that the modelling of the crumble zone and the dynamic responses are reliable. Five different speeds are selected to investigate the robustness of control system and its effect on the vehicle crash characteristics at low and high speeds with full and offset collision scenarios. A great improvement of vehicle pitch and yaw angels and accelerations at high speed collision are obtained from this analysis.


Author(s):  
V.G. Petushkov ◽  
M.I. Zotov ◽  
L.D. Dobrushin

Joining of metals in explosive welding takes place as a result of their plastic deformation during a high speed collision and is usually accompanied by typical formation of waves at the interface. In welding aluminium, the weld boundary can also be straight if the speed of the contact point is νc is ≤ 1900 m/s. These welding conditions make it possible to prevent melting of the metal at the interface and increase at the same time its corrosion resistance. In this article, the effect of the dynamic collision angle on the special features of plastic flow of the metal in the vicinity of the contact boundary in welding sheets of AS5 aluminium is described.


2020 ◽  
Vol 90 (3) ◽  
pp. 434
Author(s):  
А.Н. Ищенко ◽  
С.А. Афанасьева ◽  
Н.Н. Белов ◽  
В.В. Буркин ◽  
С.В. Галсанов ◽  
...  

In this work, computational and experimental studies of the process of destruction of composite firing pin of porous alloy tungsten+nickel+iron+cobalt with 10 % content of titanium tungsten carbide at high-speed collision with steel barriers. It is shown that at ballistic tests with the broad range of speeds, significant exceeding of penetration of these firing pins in steel barriers in comparison with a mass-dimensional analog of the W-Ni-Fe-90 alloy. Based on the analysis of the crater morphology and structure of the striker fragments after penetration into the barrier, the assumption of implementation of the self-sharpenings mode of the firing pin, by means of localization of plastic deformation is made that leads to decrease in the effective area of interaction and increase in depth of penetration. Modification of a mathematical model of a porous ideal elasto-plastic solid with complex structure for the description of destruction with a possibility of accounting of the adiabatic shift mechanism in the course of interaction of the firing pin and a barrier is carried out.


2013 ◽  
Vol 711 ◽  
pp. 149-154 ◽  
Author(s):  
Se Ho Kim

In this paper, a frontal crash analysis is carried out with a full vehicle model in order to investigate the influence of stamping effects of auto-body members on the crash characteristics of the vehicle. Stamping effects are considered for load carrying members such as the front side member and the rear lower. From the analysis result considering stamping effects, it is conformed that stamping history has to be considered for longitudinal members simultaneously that transfer the impact load under the frontal impact. Comparison of simulation result with experimental one also shows that the prediction accuracy of the crash analysis is remarkably improved.


Author(s):  
Y. Dixit ◽  
P. Begeman ◽  
G. S. Dhaliwal ◽  
G. Newaz ◽  
D. Board ◽  
...  

This research study highlights the testing method and relevant results for assessing impact performance of a carbon fiber composite front bumper crush can (FBCC) assembly subjected to full frontal crash loading. It becomes extremely important to study the behavior of lightweight composite components under a crash scenario in order to apply them to automotive structures to reduce the overall weight of the vehicle. Computer-aided engineering (CAE) models are extremely important tools to virtually validate the physical testing by assessing the performances of these structures. Due to lack of available studies on carbon fiber composite FBCCs assemblies under the frontal crash scenario, a new component-level test approach would provide assistance to CAE models and better correlation between results can be made. In this study, all the tests were performed by utilizing a sled-on-sled testing method. An extreme care was taken to ensure that there is no bottoming-out force for this type of test while adjusting the impact speed of sled. Full frontal tests on FBCC structures were conducted by utilizing five high-speed cameras (HSCs), several accelerometers and a load wall. Excellent correlation was achieved between video tracking and accelerometers results for time histories of displacement and velocity. The standard deviation and coefficient of variance for the energy absorbed were very low suggesting the repeatability of the full frontal tests. The impact histories of FBCC specimens were consistent and in excellent agreement with respect to each other. Post-impact photographs showed the consistent crushing of composite crush cans and breakage of the bumper beam from middle due to the production of tensile stresses stretched caused by straightening of the bumper curvature after hitting the load wall.


Author(s):  
Adam S. Coutee ◽  
Bert Bras

Modeling the interaction between dynamic objects in a haptically enabled virtual environment requires high-speed collision detection. We present an independent comparison of two publicly available collision detection libraries, V-Clip and SWIFT++, as they perform in our assembly and disassembly simulation. Three assembly sequences, differing only by the complexity of the objects involved, are tested and compared based on speed of execution. In the process, some potentially limiting factors experienced while using these libraries are exposed.


2004 ◽  
Vol 49 (11) ◽  
pp. 683-685
Author(s):  
B. A. Boiko ◽  
A. E. Dubinov ◽  
V. D. Selemir

2017 ◽  
Vol 103 ◽  
pp. 73-77 ◽  
Author(s):  
Jacob R. Joseph ◽  
Siri S. Khalsa ◽  
Brandon W. Smith ◽  
Paul Park

Sign in / Sign up

Export Citation Format

Share Document