scholarly journals Modelling and analysis of vehicle crash system integrated with different VDCS under high speed impacts

2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Mustafa Elkady ◽  
Ahmed Elmarakbi

AbstractThe behaviour of a vehicle at high-speed crashes is enhanced by using active vehicle dynamics control systems. A 6-Degree-of-Freedom (6-DOF) mathematical model is developed to carry out this study. In this model, vehicle dynamics is studied together with vehicle crash structural dynamics. Validation of the vehicle crash structure of the proposed model is achieved to ensure that the modelling of the crumble zone and the dynamic responses are reliable. Five different speeds are selected to investigate the robustness of control system and its effect on the vehicle crash characteristics at low and high speeds with full and offset collision scenarios. A great improvement of vehicle pitch and yaw angels and accelerations at high speed collision are obtained from this analysis.

Author(s):  
Mustafa Elkady ◽  
Ahmed Elmarakbi

The aim of this paper is to enhance crashworthiness in the case of vehicle-to-barrier full frontal collision using vehicle dynamics control systems integrated with an extendable bumper. The work carried out in this paper includes developing and analyzing a new vehicle dynamics/crash mathematical model and a multi-body occupant mathematical model to capture the occupant kinematics during full frontal collision. Different cases of vehicle dynamics control systems have been used during the collision to show their effect on the occupant dynamic response. The occupant deceleration and the occupant’s chest and head rotational acceleration are used as injury criteria. It is shown from the numerical simulations that the occupant behaviour can be captured and analysed quickly and accurately. Furthermore, it is shown that the vehicle dynamics control systems (VDCS) can affect the crash characteristics positively and the occupant safety is improved.


Author(s):  
Mustafa Elkady ◽  
Muhammad Sheikh ◽  
Kevin Burn

The aim of this chapter is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the vehicle's occupant in case of offset frontal vehicle-to-vehicle collision. The study also investigates the full-frontal vehicle-to-barrier crash scenario. A unique 6-degree-of-freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Furthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved in the full and offset crash scenarios.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6328
Author(s):  
Bo Hu ◽  
Yunzhe Li ◽  
Lairong Yin

The valve train is one of the main sources of engine vibration, and its dynamic performance is crucial for output power and fuel consumption. The flexibilities of slender bars and beams should be emphasised in the design of valve trains to develop high-power and high-speed engines with industrial applications. A flexible dynamic model of a valve train system is proposed. In the proposed model, the components, except the cam and gear bodies, are modelled as flexible bodies with multidirectional deformations. The gyroscopic effects of the camshaft, cams and gear discs are also considered to predict dynamic responses at high speeds accurately. Gear meshing, the friction of the cam–tappet pair, the centrifugal force of the cams and valve clearance are also considered. Experiments on housing vibration and pushrod stress are conducted to validate the proposed model. Results show that the proposed model can predict the dynamic stress of the flexible components well and predict the trend shown by the housing vibration. The proposed model shows that excessive cam rotation speed and valve clearance will cause intense bounce and jump phenomena. The proposed model can be an important reference for designing engine work speed, adjusting valve clearance and improving component durability.


2020 ◽  
Vol 11 (1) ◽  
pp. 102-111
Author(s):  
Em Poh Ping ◽  
J. Hossen ◽  
Wong Eng Kiong

AbstractLane departure collisions have contributed to the traffic accidents that cause millions of injuries and tens of thousands of casualties per year worldwide. Due to vision-based lane departure warning limitation from environmental conditions that affecting system performance, a model-based vehicle dynamics framework is proposed for estimating the lane departure event by using vehicle dynamics responses. The model-based vehicle dynamics framework mainly consists of a mathematical representation of 9-degree of freedom system, which permitted to pitch, roll, and yaw as well as to move in lateral and longitudinal directions with each tire allowed to rotate on its axle axis. The proposed model-based vehicle dynamics framework is created with a ride model, Calspan tire model, handling model, slip angle, and longitudinal slip subsystems. The vehicle speed and steering wheel angle datasets are used as the input in vehicle dynamics simulation for predicting lane departure event. Among the simulated vehicle dynamic responses, the yaw acceleration response is observed to provide earlier insight in predicting the future lane departure event compared to other vehicle dynamics responses. The proposed model-based vehicle dynamics framework had shown the effectiveness in estimating lane departure using steering wheel angle and vehicle speed inputs.


2021 ◽  
Author(s):  
Giorgio Riva ◽  
Luca Mozzarelli ◽  
Matteo Corno ◽  
Simone Formentin ◽  
Sergio M. Savaresi

Abstract State of the art vehicle dynamics control systems do not exploit tire road forces information, even though the vehicle behaviour is ultimately determined by the tire road interaction. Recent technological improvements allow to accurately measure and estimate these variables, making it possible to introduce such knowledge inside a control system. In this paper, a vehicle dynamics control architecture based on a direct longitudinal tire force feedback is proposed. The scheme is made by a nested architecture composed by an outer Model Predictive Control algorithm, written in spatial coordinates, and an inner longitudinal force feedback controller. The latter is composed by four classical Proportional-Integral controllers in anti-windup configuration, endowed with a suitably designed gain switching logic to cope with possible unfeasible references provided by the outer loop, avoiding instability. The proposed scheme is tested in simulation in a challenging scenario where the tracking of a spiral path on a slippery surface and the timing performance are handled simultaneously by the controller. The performance is compared with that of an inner slip-based controller, sharing the same outer Model Predictive Control loop. The results show comparable performance in presence of unfeasible force references, while higher robustness is achieved with respect to friction curve uncertainties.


ATZ worldwide ◽  
2005 ◽  
Vol 107 (11) ◽  
pp. 16-19
Author(s):  
Johannes Schier ◽  
Rainer Willig ◽  
Klaus Miekley

Author(s):  
Carlos Villegas ◽  
Martin Corless ◽  
Wynita Griggs ◽  
Robert Shorten

A basic problem in the design of control systems is the lack of simple effective methods for designing decentralized control systems that are robust with respect to certain types of structural uncertainties. Here, we present one such design methodology that is based upon the Kalman–Yakubovich–Popov Lemma. Advantages of this approach include the ease with which output feedback controllers can be designed, and the fact that the design methodology and uncertainties are expressed using classical frequency domain notions. We use our design technique to obtain an integrated chassis controller for application to automotive dynamics.


2016 ◽  
Vol 5 (2) ◽  
pp. 80-122 ◽  
Author(s):  
Mustafa Elkady ◽  
Ahmed Elmarakbi ◽  
John MacIntyre ◽  
Mohamed Alhariri

The aim of this paper is to investigate the effect of vehicle dynamics control systems (VDCS) on both the collision of the vehicle body and the kinematic behaviour of the vehicle's occupant in case of offset frontal vehicle-to-vehicle collision. A unique 6-Degree-of-Freedom (6-DOF) vehicle dynamics/crash mathematical model and a simplified lumped mass occupant model are developed. The first model is used to define the vehicle body crash parameters and it integrates a vehicle dynamics model with a vehicle front-end structure model. The second model aims to predict the effect of VDCS on the kinematics of the occupant. It is shown from the numerical simulations that the vehicle dynamics/crash response and occupant behaviour can be captured and analysed quickly and accurately. Furthermore, it is shown that the VDCS can affect the crash characteristics positively and the occupant behaviour is improved.


2017 ◽  
Vol 867 ◽  
pp. 239-244
Author(s):  
Sivam Duraisivam ◽  
E. Jamuna

Active control of vehicle dynamics has become one of the top competitive features in today’s automobiles. Vehicle dynamics control systems include effective brakes and the number of life loss has been increased due to the in effective brakes. To reduce the crashing of vehicles caused by the braking disability by overcoming the drawbacks of the conventional braking system.Brakes are employed to stop or slow down the speed of the vehicle depending upon the driving needs. When brake applied, each wheel of the vehicle builds-up a certain braking force. For this reason, greater the number of wheels braked, greater will be the braking effect, and sooner the vehicle comes to halt. With this in mind the existing air brake system of a 6 wheeler is studied and analyzed. Brake shoe assembly is completely modeled using solid works and the analysis of the brake shoe assembly is carried out in Ansys .The results are analyzed . Then redesigned brake shoe assembly is modeled in solid works and analyzed with certain changes as required.


Sign in / Sign up

Export Citation Format

Share Document