Hardware Implementation of Two Stage Interleaved Boost Converter for Electric Vehicle Application

Author(s):  
S. Suresh ◽  
R. Zahira

This paper deals with the design and simulation of two stage interleaved boost converter (IBC) for electric vehicle (EV) applications. The IBC is considered as a better solution among the different DC-DC topologies for EV for reducing the current ripple, power loss and the size of the components. Traditional DC-DC boost converter (BC) is not applicable for high power applications. Use of interleaving technique minimizes the voltage stress on the switching devices and to be improving the converter performance. Simulation is carried out using MATLAB/Simulink software. The prototype of two stage IBC is fabricated to test the performance. Hardware results shows that the inductor power loss is minimum at a switching frequency of 5 kHz compared to that of 10 kHz. The output power at the load end is maximum for 5 kHz switching when compared with 10 kHz switching. The study shows that the operation of IBC at 5 kHz improves the performance.

Author(s):  
A. F. H. A. Gani ◽  
A. A. Bakar ◽  
A. Ponniran ◽  
M. Hussainar ◽  
M. A. N. Amran

<p>The continuously increasing demand for control on electric power equipment has led to the rapid technological development in various applications such as renewable energy, electric drives, and communication. Pulse Width Modulation (PWM) switching is an important technique to control the output voltage. PWM signals can either be generated using digital controller or analog controller. Digital controllers are widely used to generate PWM signals due to their reliability in solving complex algorithms within short amount of time. Multiphase boost converter is capable to overcome high input current ripple, current stress and semiconductor losses in conventional boost converter. This paper proposes a PWM switching scheme for multiphase interleaved converter using Field Programmable Gate Array (FPGA). The proposed switching scheme uses PWM switching technique that is implemented by programming Altera DE2-70 board. The duty cycle can be easily adjusted using assigned switches on the Altera board. For validation, switching frequency was set to 100 kHz, and then switching signal was observed using oscilloscope.</p>


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1932
Author(s):  
Navid Salehi ◽  
Herminio Martínez-García ◽  
Guillermo Velasco-Quesada

To improve the voltage gain of step-up converters, the cascaded technique is considered as a possible solution in this paper. By considering the concept of cascading two Z-source networks in a conventional boost converter, the proposed topology takes the advantages of both impedance source and cascaded converters. By applying some modifications, the proposed converter provides high voltage gain while the voltage stress of the switch and diodes is still low. Moreover, the low input current ripple of the converter makes it absolutely appropriate for photovoltaic applications in expanding the lifetime of PV panels. After analyzing the operation principles of the proposed converter, we present the simulation and experimental results of a 100 W prototype to verify the proposed converter performance.


2021 ◽  
Vol 36 (4) ◽  
pp. 3894-3908
Author(s):  
Yousu Yao ◽  
Shenghan Gao ◽  
Yijie Wang ◽  
Xiaosheng Liu ◽  
Xiangjun Zhang ◽  
...  

2014 ◽  
Vol 622 ◽  
pp. 97-103
Author(s):  
V. Karthikeyan ◽  
Venkatesan Jamuna ◽  
D. Rajalakshmi

Renewable energy is derived from natural resources and most commonly used renewable energy system is photovoltaic cells. DC-DC boost converter serves many purposes and usually required in many applications which has a low output voltage such as batteries, photo-voltaic cell. In this paper interleaved boost converter (IBC) topology is discussed for solar energy generation. IBC have better performance characteristics compared to a conventional boost converter due to increased efficiency. DC-DC IBC have been considered and analyzed by input current ripple and output current ripple and output voltage ripple. The waveforms of voltage and current ripples and the output voltage are obtained by using MATLAB/SIMULINK are presented. The design of inductor, capacitor and analysis of ripples has been presented.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2924
Author(s):  
Seok-Hyeong Ham ◽  
Hyung-Jin Choe

This paper proposes a miniature DC-DC boost converter to drive the display panel of a notebook computer. To reduce the size of the circuit, the converter was designed to operate at a switching frequency of 1 MHz. The power conversion efficiency improved using a passive snubber circuit that consisted of one inductor, two capacitors, and two diodes; it reduced the switching losses by lowering the voltage stress of the switch and increased the voltage gain using charge pumping operations. An experimental converter was fabricated at 2.5 cm × 1 cm size using small components, and tested at input voltage 5 V ≤ VIN ≤ 17.5 V and output current 30 mA ≤ IO ≤ 150 mA. Compared to existing boost converters, the proposed converter had ~7.8% higher power conversion efficiency over the entire range of VIN and IO, only ~50% as much voltage stress of the switch and diodes, and a much lower switch temperature TSW = 49.5 °C. These results indicate that the proposed converter is a strong candidate for driving the display panel of a notebook computer.


Sign in / Sign up

Export Citation Format

Share Document