scholarly journals Miniature DC-DC Boost Converter for Driving Display Panel of Notebook Computer

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2924
Author(s):  
Seok-Hyeong Ham ◽  
Hyung-Jin Choe

This paper proposes a miniature DC-DC boost converter to drive the display panel of a notebook computer. To reduce the size of the circuit, the converter was designed to operate at a switching frequency of 1 MHz. The power conversion efficiency improved using a passive snubber circuit that consisted of one inductor, two capacitors, and two diodes; it reduced the switching losses by lowering the voltage stress of the switch and increased the voltage gain using charge pumping operations. An experimental converter was fabricated at 2.5 cm × 1 cm size using small components, and tested at input voltage 5 V ≤ VIN ≤ 17.5 V and output current 30 mA ≤ IO ≤ 150 mA. Compared to existing boost converters, the proposed converter had ~7.8% higher power conversion efficiency over the entire range of VIN and IO, only ~50% as much voltage stress of the switch and diodes, and a much lower switch temperature TSW = 49.5 °C. These results indicate that the proposed converter is a strong candidate for driving the display panel of a notebook computer.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4569
Author(s):  
Vadim Sidorov ◽  
Andrii Chub ◽  
Dmitri Vinnikov

The paper is focused on galvanically isolated series resonant DC–DC converters (SRCs) with a low quality factor of the resonant tank. These converters provide input voltage regulation at fixed switching frequency and good power density. Different modulation methods at the fixed switching frequency enable the implementation of the voltage buck functionality in these converters. The SRC under study is considered as a step-up front-end DC–DC converter for the integration of renewable energy sources in DC microgrids. The paper evaluates the voltage buck performance of the SRC achieved by using different pulse-width modulation (PWM) methods including conventional PWM and shifted PWM. Moreover, the new PWM methods, i.e., the hybrid shifted PWM (HSPWM), improved shifted PWM (ISPWM), and hybrid PWM (HPWM), are proposed to overcome the disadvantages of the existing methods. They improve the power conversion efficiency in the buck mode by reducing the power losses in the semiconductor switches and the isolating transformer of the SRC. The proposed and the existing methods are benchmarked in terms of the components stresses and power conversion efficiency. The presented findings have been experimentally validated by the help of a 200 W prototype, which demonstrated the lowest power loss in the case of the HPWM.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5107
Author(s):  
Catalina González-Castaño ◽  
Carlos Restrepo ◽  
Fredy Sanz ◽  
Andrii Chub ◽  
Roberto Giral

Many electronic power distribution systems have strong needs for highly efficient AC-DC conversion that can be satisfied by using a buck-boost converter at the core of the power factor correction (PFC) stage. These converters can regulate the input voltage in a wide range with reduced efforts compared to other solutions. As a result, buck-boost converters could potentially improve the efficiency in applications requiring DC voltages lower than the peak grid voltage. This paper compares SEPIC, noninverting, and versatile buck-boost converters as PFC single-phase rectifiers. The converters are designed for an output voltage of 200 V and an rms input voltage of 220 V at 3.2 kW. The PFC uses an inner discrete-time predictive current control loop with an output voltage regulator based on a sensorless strategy. A PLECS thermal simulation is performed to obtain the power conversion efficiency results for the buck-boost converters considered. Thermal simulations show that the versatile buck-boost (VBB) converter, currently unexplored for this application, can provide higher power conversion efficiency than SEPIC and non-inverting buck-boost converters. Finally, a hardware-in-the-loop (HIL) real-time simulation for the VBB converter is performed using a PLECS RT Box 1 device. At the same time, the proposed controller is built and then flashed to a low-cost digital signal controller (DSC), which corresponds to the Texas Instruments LAUNCHXL-F28069M evaluation board. The HIL real-time results verify the correctness of the theoretical analysis and the effectiveness of the proposed architecture to operate with high power conversion efficiency and to regulate the DC output voltage without sensing it while the sinusoidal input current is perfectly in-phase with the grid voltage.


Author(s):  
Fouad Farah ◽  
Mustapha El Alaoui ◽  
Abdelali El Boutahiri ◽  
Mounir Ouremchi ◽  
Karim El Khadiri ◽  
...  

In this paper, we aim to make a detailed study on the evaluation and the characteristics of the non-inverting buck–boost converter. In order to improve the behaviour of the buck-boost converter for the three operating modes, we propose an architecture based on peak current-control. Using a three modes selection circuit and a soft start circuit, this converter is able to expand the power conversion efficiency and reduce inrush current at the feedback loop. The proposed converter is designed to operate with a variable output voltage. In addition, we use LDMOS transistors with low on-resistance, which are adequate for HV applications. The obtained results show that the proposed buck-boost converter perform perfectly compared to others architecture and it is successfully implemented using 0.18 μm CMOS TSMC technology, with an output voltage regulated to 12V and input voltage range of 4-20 V. The power conversion efficiency for the three operating modes buck, boost and buck-boost are 97.6%, 96.3% and 95.5% respectively at load current of 4A.


2018 ◽  
Vol 33 (8) ◽  
pp. 6646-6655 ◽  
Author(s):  
Seok-Hyeong Ham ◽  
Hyung-Jin Choe ◽  
Hyeon-Seok Lee ◽  
Bongkoo Kang

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4809
Author(s):  
Yajun Lin ◽  
Jianxin Yang ◽  
Tin-Wai Mui ◽  
Yong Zhou ◽  
Ka-Nang Leung

This work proposes a piecewise modeling of output-voltage ripple for linear charge pumps. The proposed modeling can obtain a more accurate design expression of power-conversion efficiency. The relationship between flying and output capacitance, as well as switching frequency and optimize power-conversion efficiency can be calculated. The proposed modeling is applied to three charge-pump circuits: 1-stage linear charge pump, dual-branch 1-stage linear charge pump and 4× cross-coupled charge pump. Circuit-level simulation is used to verify the accuracy of proposed modeling.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4455
Author(s):  
Hwa-Pyeong Park ◽  
Mina Kim ◽  
Jee-Hoon Jung

An LLC resonant converter has been widely used in various industrial applications because of its high cost-effectiveness, high power conversion efficiency, simple design methodology, and simple control algorithms using a pulse frequency modulation (PFM). In addition, the soft switching capability of the LLC resonant converter is good to obtain high switching frequency operations, which can get the high-power density of the power converter. Over the past years, several studies have been conducted to improve the performance of a high switching frequency LLC resonant converter with resonant tank design, optimal power stage design, and enhanced control algorithms. This paper is the review paper in terms of the control algorithms for the LLC resonant converter. It focuses on the overview of the high switching-frequency LLC resonant converter in terms of the control algorithms. The advanced control algorithm can improve power conversion efficiency, dynamic performance, tight output voltage regulation, and small electro-magnetic interference. The operational principles of the control algorithms are briefly explained to show their own characteristics and advantages. Thereafter, the research issues for the future works will be discussed in the conclusion.


2012 ◽  
Vol 59 (4) ◽  
pp. 1808-1814 ◽  
Author(s):  
Jae-Jung Yun ◽  
Hyung-Jin Choe ◽  
Young-Ho Hwang ◽  
Yong-Kyu Park ◽  
Bongkoo Kang

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5447
Author(s):  
Xiwen Zhu ◽  
Qiang Fu ◽  
Ruimo Yang ◽  
Yufeng Zhang

A high power-conversion-efficiency voltage boost converter with MPPT for wireless sensor nodes (WSNs) is proposed in this paper. Since tiny wireless sensor nodes are all over complex environments, an efficient power management system (PMS) must be equipped to achieve long-term self-power supply and maintain regular operation. It is common to use Photovoltaic cells (PV) to harvest sunlight in the environment. However, most existing interface boost integrated circuits for the PV cell have low efficiency. This paper presents a voltage boost converter (VBC) with high power conversion efficiency (PCE) for WSNs. The integrated circuit (IC) designed in this paper includes a novel four-phase high-efficiency charge pump module, an ultra-low-power perturbation observation (P&O) MPPT control circuit module, a feedback control module, a nano-ampere current reference, etc. Manufactured in a standard 0.35 um complementary metal-oxide-semiconductor (CMOS) technology, the chip area is 3.15 mm × 2.43 mm. Test results demonstrate that when the output voltage of the PV cell is more than 0.5 V, VBC can improve the voltage to 3Vin, and the calculated voltage conversion efficiency can reach 99.4%. P&O MPPT algorithm makes output power improving 8.53%. Furthermore, when the output load current is 297uA, the output PCE achieves 85.1%.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2237 ◽  
Author(s):  
Tomoharu Yada ◽  
Yuta Katamoto ◽  
Hiroaki Yamada ◽  
Toshihiko Tanaka ◽  
Masayuki Okamoto ◽  
...  

This paper deals with a design and experimental verification of 400-W class light-emitting diode (LED) driver with cooperative control method for two-parallel connected DC/DC converters. In the cooperative control method, one DC/DC converter is selected to supply the output current for the LED, based on the reference value of the LED current. Thus, the proposed cooperative-control strategy achieves wide dimming range operation. The discontinuous current conduction mode (DCM) operation improves the total harmonic distortion (THD) value on the AC side of the LED driver. The standard of Electrical Applications and Materials Safety Act in Japan has defined the flicker frequency and minimum optical output. The smoothing capacitors are designed by considering the power flow and LED current ripple for satisfying the standard. A prototype LED driver is constructed and tested. Experimental results demonstrate that a wide dimming operation range from 1 to 100% is achieved with a THD value less than 10% on the AC side, by the proposed control strategy. The authors compare the power conversion efficiency between Si- and SiC-metal-oxide-semiconductor field-effect transistors (MOSFETs) based LED driver. The maximum power conversion efficiency by using SiC-MOSFETs based LED driver is 91.4%. Finally, the variable switching frequency method is proposed for improving the power conversion efficiency for a low LED current region.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document