A Novel Unity Power Factor Hysteresis Current Control for SPMSM Using Switching Table

2014 ◽  
Vol 9 (2) ◽  
Author(s):  
Mingdi Fan ◽  
Hui Lin ◽  
Bingqiang Li
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6663
Author(s):  
Mohammad Ali ◽  
Mohd Tariq ◽  
Deepak Upadhyay ◽  
Shahbaz Ahmad Khan ◽  
Kuntal Satpathi ◽  
...  

In this paper, a twelve-band hysteresis control is applied to a recent thirteen-level asymmetrical inverter topology by employing a robust proportional-integral (PI) controller whose parameters are decided online by genetic algorithm (GA). The asymmetrical inverter topology can generate thirteen levels of output voltage incorporating only ten switches and exhibits boosting capability. A 12-band hysteresis current control strategy is applied to ensure the satisfactory operation of the inverter. It is designed to provide a sinusoidal line current at the unity power factor. The tuning of the PI controller is achieved by a nature inspired GA. Comparative analysis of the results obtained after application of the GA and the conventional Ziegler–Nichols method is also performed. The efficacy of the proposed control on WE topology is substantiated in the MATLAB Simulink environment and was further validated through experimental/real-time implementation using DSC TMS320F28379D and Typhoon HIL real-time emulator (Typhoon-HIL-402).


Electronics ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 1335 ◽  
Author(s):  
Mahammad A. Hannan ◽  
Zamre A. Ghani ◽  
Mohammed M. Hoque ◽  
Molla S. Hossain Lipu

This paper presents the development of fuzzy-based inverter controller for photovoltaic (PV) application to avoid the nonlinearity characteristic and fluctuations of PV inverter output. The fuzzy-based controller algorithm is employed in the PV inverter control system to optimize the duty cycles of the insulated-gate bipolar transistors (IGBTs) and to enhance the inverter outputs with lower harmonic contents and unity power factor. The developed fuzzy-based PV inverter controller is implemented in the MATLAB/Simulink models and experimentally tested in a dSPACE DS1104 process controller. The obtained simulation result of the developed fuzzy-based PV inverter controller is validated with experimental results under different performance conditions. It is seen that the experimental results of the switching signals, inverter voltage and current, control parameters, and total harmonic distortion (THD) of load current and output voltage of the PV inverter are closely matched with that of the simulation results. To validate the inverter performance, the proposed fuzzy-based PV inverter controller outperforms other studies with a voltage THD of 2.5% and a current THD of 3.5% with unity power factor.


Sign in / Sign up

Export Citation Format

Share Document