scholarly journals Groundwater Vulnerability Assessment of the Tarkwa Mining Area Using SINTACS Approach and GIS

2017 ◽  
Vol 17 (1) ◽  
pp. 18-30
Author(s):  
A. Ewusi ◽  
I. Ahenkorah ◽  
J. S. Y. Kuma

Groundwater vulnerability assessment to delineate areas that are susceptible to contamination from mining and anthropogenic activities has become an important element for resource management and landuse planning. In view of the extensive mining in the Tarkwa area, quality of groundwater has become an important issue. This study estimates aquifer vulnerability by applying the SINTACS model which uses seven environmental parameters to evaluate aquifer vulnerability and geographical information system (GIS) in the Tarkwa mining area. Sensitivity analysis has also been carried out to evaluate the relative importance of the model parameters for aquifer vulnerability. The SINTACS model results show that the intrusive rocks within the Tarkwaian and the Birimian rocks are dominated by very high vulnerability classes while the Banket Series is characterised by high vulnerability class. The Huni Sandstones have moderately high vulnerability. In addition, the Kawere Group and the Tarkwa Phyllites displayed medium vulnerability. Analysis from the variogram model shows that all parameters used in the SINTACS model have a strong spatial structure. From statistical analysis, depth to water parameter inflicted the highest impact on the vulnerability of the aquifer followed by effective infiltration, vadose zone media, soil media, aquifer media, topography and hydraulic conductivity in the order of decreasing impact. Sensitivity analysis indicated that the aquifer media, hydraulic characteristics and topography cause large variation in vulnerability index. Depth to water and effective infiltration were found to be more effective in assessing aquifer vulnerability. Keywords: Groundwater, Vulnerability, Tarkwa, SINTACS, GIS

2020 ◽  
Vol 53 (2E) ◽  
pp. 12-24
Author(s):  
Madyan Al-Gburi

Several studies and assessments have been conducted of areas exposed to pollution, especially areas that contain aquifer. The final extraction of the vulnerability map of the groundwater was constructed through the use of the DRASTIC method by applying the linear equation of the seven coefficients in the Arc GIS software program (Version 10.4). The aim of the study to assess aquifer vulnerability to pollution. Results, vulnerability map range between 75-126 (very low, low, and medium), the study area consists of very low and low vulnerability, except some areas medium vulnerability close to the center of the sub-basin in the standard vulnerability map (s) and 91-149 (very low, low, and medium) for the agriculture or pesticide vulnerability map (p), the medium vulnerability occupies a greater area the center of the sub-basin.


2020 ◽  
Author(s):  
Joanna Doummar ◽  
Assaad H. Kassem

<p>Qualitative vulnerability assessment methods applied in karst aquifers rely on key factors in the hydrological compartments usually assigned different weights according to their estimated impact on groundwater vulnerability. Based on an integrated numerical groundwater model on a snow-governed karst catchment area (Assal Spring- Lebanon), the aim of this work is to quantify the importance of the most influential parameters on recharge and spring discharge and outline potential parameters that are not accounted for in standard methods, when in fact they do play a role in the intrinsic vulnerability of a system. The assessment of the model sensitivity and the ranking of parameters are conducted using an automatic calibration tool for local sensitivity analysis in addition to a variance-based local sensitivity assessment of model output time series (recharge and discharge)  for two consecutive years (2016-2017) to various model parameters. The impact of each parameter was normalized to estimate standardized weights for each of the process based key-controlling parameters. Parameters to which model was sensitive were factors related to soil, 2) fast infiltration (bypass function) typical of karst aquifers, 3) climatic parameters (melting temperature and degree day coefficient) and 4) aquifer hydraulic properties that play a major role in groundwater vulnerability inducing a temporal effect and varied recession. Other less important parameters play different roles according to different assigned weights proportional to their ranking. Additionally, the effect of slope/geomorphology (e.g., dolines) was further investigated.  In general, this study shows that the weighting coefficients assigned to key vulnerability factors in the qualitative assessment methods can be reevaluated based on this process-based approach.</p><p> </p><p> </p><p> </p>


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 228
Author(s):  
Teresa Albuquerque ◽  
Natália Roque ◽  
Joana Rodrigues ◽  
Margarida Antunes ◽  
Catarina Silva

Groundwater vulnerability assessment has become a useful tool for groundwater pollution prevention. Groundwater vulnerability maps provide useful data for protecting groundwater resources. Identification of agricultural patterns is an important issue for optimized land management. The watershed of the Tagus River is the backbone of this study. Naturtejo UNESCO Global Geopark, in the central interior of Portugal, corresponds to a rural area. Intensive agricultural practices showed an increasing trend in the last decades. The method that is most used internationally to assess vulnerability is the DRASTIC index. In this study, the DRASTICAI index is introduced. A new attribute—anthropogenic influence—is added here. Five levels of increasing vulnerability, from low to high, can be recognized here. The municipality of Idanha-a-Nova is most affected by intensive agricultural activities, showing spatial patterns of DRASTICAI with a clear influence of anthropogenic activities, with high needs for groundwater abstraction. A robust assessment of groundwater quality has a key role. Climate change scenarios and water scarcity are important issues in the coming years, and particularly in the studied area. Therefore, optimized groundwater management is essential to consider in policy-making strategies.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Balal Oroji

Abstract Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sensible resource management and land use planning. It has been recognized for its ability to delineate areas that are more likely than others to become contaminated as a result of anthropogenic activities near the earth’s surface. The main methods of mapping and assessing intrinsic vulnerability in porous media are the following: SI, GOD, SINTACS and DRASTIC. The basic purpose of these maps is to divide an area into more classes, each of which will represent a different dynamic for a specific purpose and use. These models have been used to map groundwater vulnerability to pollution in Hamadan–Bahar aquifer. The results showed in models of DRASTIC, SI, GOD and SINTACS, respectively, 7.1, 44.21, 29.56 and 20.16 percent of the areas are high potential vulnerabilities. According to the model DRASTIC at study area, 33.6% of has a low class of groundwater vulnerability to contamination, whereas a total of 29.4% of the study area has a moderate vulnerability. The final results indicate that the aquifer system in the interested area is relatively protected from contamination on the groundwater surface. The correlation between models shows that DRASTIC model has the highest CI, which is 141, and the GOD model has the highest CI, which is 139. Also, the highest CI for SINTACS and SI is 137 and 136, respectively. Therefore, DRASTIC model is the best model among these models for predicting groundwater vulnerability in Hamadan–Bahar plain aquifer.


Ground Water ◽  
2013 ◽  
Vol 52 (6) ◽  
pp. 864-874 ◽  
Author(s):  
Jean Beaujean ◽  
Jean-Michel Lemieux ◽  
Alain Dassargues ◽  
René Therrien ◽  
Serge Brouyère

Sign in / Sign up

Export Citation Format

Share Document