scholarly journals Optimization of dry sliding wear properties ofAZ91E/ nano Al2O3 reinforced metal matrix composite with grey relational analysis

2019 ◽  
Vol 11 (4) ◽  
pp. 41 ◽  
Author(s):  
C. Tarasasanka ◽  
K. Snehita ◽  
K. Ravindra ◽  
D. Sameerkumar
2014 ◽  
Vol 541-542 ◽  
pp. 258-262 ◽  
Author(s):  
S. Baskaran ◽  
V. Anandakrishnan ◽  
Muthukannan Durai Selvam ◽  
S. Raghuraman ◽  
V.M. Illayaraja Muthaiyaa

The optimization of dry sliding wear process parameters of in-situ aluminium based metal matrix composites to obtain multiple objectives to minimize wear rate, specific wear rate, co-efficient of friction and maximize wear resistance was attempted by Taguchi Grey Relational Analysis. Moreover to identify the significance of the parameters, a statistical analysis was performed using analysis of variance. Based on the analysis, the sliding speed was identified as the major contributor with 71.41% followed by percentage of reinforcement with 8.13% and other parameters load and sliding distance are found to be insignificant. The optimum parameters identified by the Grey Relational Analysis are verified through experimental confirmation test.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shouvik Ghosh ◽  
Prasanta Sahoo ◽  
Goutam Sutradhar

The present study considers an experimental study of tribological performance of Al-7.5% SiCp metal matrix composite and optimization of tribological testing parameters based on the Taguchi method coupled with grey relational analysis. A grey relational grade obtained from grey relational analysis is used as a performance index to study the behaviour of Al-7.5% SiCp MMC with respect to friction and wear characteristics. The tribological experiments are carried out by utilizing the combinations of tribological test parameters based on the L27 Taguchi orthogonal design with three test parameters, namely, load, speed, and time. The material Al-7.5% SiCp metal matrix composite is developed by reinforcing LM6 aluminium alloy with 7.5% (by weight) SiC particle of 400 mesh size (~37 μm) in an electric melting furnace. It is observed that sliding time has a significant contribution in controlling the friction and wear behaviour of Al-7.5% SiCp MMC. Furthermore, all the interactions between the parameters have significant influence on tribological performance. A confirmation test is also carried out to verify the accuracy of the results obtained through the optimization problem. In addition, a scanning electron microscopy (SEM) test is performed on the wear tracks to study the wear mechanism.


2019 ◽  
Vol 16 ◽  
pp. 343-350
Author(s):  
UB. Gopal Krishna ◽  
P. Ranganatha ◽  
G.L. Rajesh ◽  
V. Auradi ◽  
S. Mahendra Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document