scholarly journals Molecular modeling, dynamics simulation and characterization of human inositol hexakisphosphate kinase 1 (IP6K1) related to diabetes

2019 ◽  
Vol 23 (3) ◽  
pp. 461 ◽  
Author(s):  
O.O. Elekofehinti ◽  
Y.V. Aladenika ◽  
Y.R. Alli-Smith ◽  
O.C. Ejelonu ◽  
A.O. Lawal
2017 ◽  
Vol 20 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Kishore Sarma ◽  
Shubhadeep Roychoudhury ◽  
Sudipta Bora ◽  
Budheswar Dehury ◽  
Pratap Parida ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1778
Author(s):  
Pakhuri Mehta ◽  
Przemysław Miszta ◽  
Sławomir Filipek

The recent developments of fast reliable docking, virtual screening and other algorithms gave rise to discovery of many novel ligands of histamine receptors that could be used for treatment of allergic inflammatory disorders, central nervous system pathologies, pain, cancer and obesity. Furthermore, the pharmacological profiles of ligands clearly indicate that these receptors may be considered as targets not only for selective but also for multi-target drugs that could be used for treatment of complex disorders such as Alzheimer’s disease. Therefore, analysis of protein-ligand recognition in the binding site of histamine receptors and also other molecular targets has become a valuable tool in drug design toolkit. This review covers the period 2014–2020 in the field of theoretical investigations of histamine receptors mostly based on molecular modeling as well as the experimental characterization of novel ligands of these receptors.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e57642 ◽  
Author(s):  
Zhigang Wu ◽  
Peng Zhou ◽  
Xiaoxin Li ◽  
Hui Wang ◽  
Delun Luo ◽  
...  

2013 ◽  
Vol 51 (25-27) ◽  
pp. 5248-5253 ◽  
Author(s):  
Takashi Shimoyama ◽  
Tomohisa Yoshioka ◽  
Hiroki Nagasawa ◽  
Masakoto Kanezashi ◽  
Toshinori Tsuru

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 387
Author(s):  
Xiangcong Wang ◽  
Moxuan Zhang ◽  
Ranran Zhu ◽  
Zhongshan Wu ◽  
Fanhong Wu ◽  
...  

PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87).


Sign in / Sign up

Export Citation Format

Share Document