scholarly journals Antibacterial Metabolites obtained from fermentation of peanut and cowpea by Lactobacillus spp

2020 ◽  
Vol 24 (10) ◽  
pp. 1827-1834
Author(s):  
P.O. Oyedoh ◽  
C.E. Oshoma ◽  
M.J. Ikenebumeh

Lactic acid bacteria elective habitat is food matrix, where they release encrypted metabolites from several parent proteins as a result of their proteolytic activity in the matrix. These metabolites when decrypted confer different bioactive activity thus improving public health. This study was aimed at producing peptide containing metabolites with antibacterial efficacy from defatted cowpea and peanut using Lactobacillus spp. Lactobacillus spp. isolated from spoilt yoghurt were identified using culture dependent and independent method. The isolates were screened for proteolytic ability on skimmed milk agar. The selected isolate with highest proteolytic activity was used for metabolites production through fermentation of defatted cowpea and peanut at 37 oC for 72 h. Parameters analyzed during fermentation were pH, Lactobacillus count, protease activity, peptide concentration and antibacterial activity. The crude peptides produced were assayed for antibacterial activity against bacteria isolated from spoilt meat. From the identified Lactobacillus spp., L. plantarum CAU4347 had the highest proteolytic activity with clear zone of 24.50 ± 0.707 mm. During fermentation the highest and lowest Lactobacillus counts were from cowpea and peanut media with values 294.2 ± 0.21 ×107 and 0.60 ± 0.4 ×107 cfu/ml respectively. Cowpea medium inoculated with L. plantarum CAU4347, had the highest peptide concentration of 79.92 ± 0.01 µg/ml. Consequently, peanut medium showed higher antibacterial activity of 18 mm against Escherichia coli. This result finding suggests that encrypted peptide metabolites from cowpea and peanut flour can confer antibacterial activity against meat spoilage bacteria thus could be utilized as a potential bio-preservative. Keywords: Metabolites, Cowpea, Peanut, Bioactive, Fermentation, Lactobacillus plantarum

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nirmani N. Wickramasinghe ◽  
Mya M. Hlaing ◽  
Joshua T. Ravensdale ◽  
Ranil Coorey ◽  
P. Scott Chandry ◽  
...  

Abstract Psychrotrophic Pseudomonas species are the key spoilage bacteria of aerobically stored chilled meat. These organisms readily form biofilms on meat under refrigerated conditions leading to consumer rejection and associated economic losses. Limited information is available on the matrix composition of the biofilms formed by these bacteria. We quantified and characterized the main components of the matrix of mono-species biofilms of selected Pseudomonas fragi and Pseudomonas lundensis strains using chemical analysis and Raman spectroscopy. The biofilms were grown at 10 °C and 25 °C on nitro-cellulose membranes placed on surface sterilized beef cuts. Extra-cellular polymeric substances of the matrix were extracted in soluble and bound forms and were chemically assessed for total carbohydrates, proteins and extra-cellular DNA. Both Pseudomonas species showed a significant increase in total carbohydrates and total proteins when grown at 10 °C as compared to 25 °C. Extra-cellular DNA did not show a strong correlation with growth temperature. Raman spectra were obtained from planktonic bacteria and membrane grown biofilms at 10 °C and 25 °C. Higher levels of guanine were detected in planktonic cells as compared to biofilm cells. This study suggests that psychrotrophic Pseudomonas species may respond to cold stress by increasing extra-cellular polymer secretions.


1997 ◽  
Vol 37 (2-3) ◽  
pp. 155-162 ◽  
Author(s):  
Blaise Ouattara ◽  
Ronald E Simard ◽  
Richard A Holley ◽  
Gabriel J.-P Piette ◽  
André Bégin

Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3109 ◽  
Author(s):  
Andres Bernal-Ballen ◽  
Jorge Lopez-Garcia ◽  
Martha-Andrea Merchan-Merchan ◽  
Marian Lehocky

Bio-artificial polymeric systems are a new class of polymeric constituents based on blends of synthetic and natural polymers, designed with the purpose of producing new materials that exhibit enhanced properties with respect to the individual components. In this frame, a combination of polyvinyl alcohol (PVA) and chitosan, blended with a widely used antibiotic, sodium ampicillin, has been developed showing a moderate behavior in terms of antibacterial properties. Thus, aqueous solutions of PVA at 1 wt.% were mixed with acid solutions of chitosan at 1 wt.%, followed by adding ampicillin ranging from 0.3 to 1.0 wt.% related to the total amount of the polymers. The prepared bio-artificial polymeric system was characterized by FTIR, SEM, DSC, contact angle measurements, antibacterial activity against Staphylococcus aureus and Escherichia coli and antibiotic release studies. The statistical significance of the antibacterial activity was determined using a multifactorial analysis of variance with ρ < 0.05 (ANOVA). The characterization techniques did not show alterations in the ampicillin structure and the interactions with polymers were limited to intermolecular forces. Therefore, the antibiotic was efficiently released from the matrix and its antibacterial activity was preserved. The system disclosed moderate antibacterial activity against bacterial strains without adding a high antibiotic concentration. The findings of this study suggest that the system may be effective against healthcare-associated infections, a promising view in the design of novel antimicrobial biomaterials potentially suitable for tissue engineering applications.


2020 ◽  
Vol 11 (6) ◽  
pp. 5240-5256 ◽  
Author(s):  
Amelia Torcello-Gómez ◽  
Didier Dupont ◽  
Julien Jardin ◽  
Valérie Briard-Bion ◽  
Amélie Deglaire ◽  
...  

Dairy and egg proteins either isolated or within the food matrix were subjected to different static in vitro digestion models (infant, fed and fasted adult). Proteolysis differed across models and regarding the effect of the matrix/processing.


Author(s):  
Eden Esteves ◽  
Paul Whyte ◽  
John Mills ◽  
Gale Brightwell ◽  
Tanushree B Gupta ◽  
...  

Abstract The presence of anaerobic microflora on fresh beef carcass and rump steaks, which may contribute to meat spoilage, was explored in this study. A total of 120 carcass and 120 rump steak swabs were collected immediately after slaughtering and boning, respectively from five meat plants, anaerobically incubated and enriched d at 4°C for 3 weeks. This was followed by DNA extraction and 16S rRNA amplicon sequencing using the Illumina MiSeqTM, with subsequent bioinformatics analysis. The enriched microbiota of the samples was classified and grouped into 149 operational taxonomic units (OTUs). The microbiota recovered from both sample types consisted mainly of Carnobacterium, with an average relative abundance of 28.4% and 32.8% in beef carcasses and beef rump steaks, respectively. This was followed by Streptococcus, Serratia, Lactococcus, Enterococcus, Escherichia-Shigella, Raoultella and Aeromonas ranging from 1.5–20% and 0.1–29.8% in enriched carcasses and rump steak swabs, respectively. Trichococcus, Bacteroides, Dysgomonas, Providencia, Paraclostridium and Proteus were also present ranging from 0–0.8% on carcass and 0–1.8% on rump steak swabs, respectively. Alpha and Beta diversity measurements showed limited diversity between the two sample types, but some differences between samples from the beef plants investigated were evident. This study highlights the presence of potential spoilage bacteria, mainly anaerobic genera on and between carcass and rump steaks, as an indication of contamination on and between these samples.


2008 ◽  
Vol 28 (16) ◽  
pp. 4927-4939 ◽  
Author(s):  
Fabien Pierrel ◽  
Oleh Khalimonchuk ◽  
Paul A. Cobine ◽  
Megan Bestwick ◽  
Dennis R. Winge

ABSTRACT The assembly of cytochrome c oxidase (CcO) in yeast mitochondria is dependent on a new assembly factor designated Coa2. Coa2 was identified from its ability to suppress the respiratory deficiency of coa1Δ and shy1Δ cells. Coa1 and Shy1 function at an early step in maturation of the Cox1 subunit of CcO. Coa2 functions downstream of the Mss51-Coa1 step in Cox1 maturation and likely concurrent with the Shy1-related heme a 3 insertion into Cox1. Coa2 interacts with Shy1. Cells lacking Coa2 show a rapid degradation of newly synthesized Cox1. Rapid Cox1 proteolysis also occurs in shy1Δ cells, suggesting that in the absence of Coa2 or Shy1, Cox1 forms an unstable conformer. Overexpression of Cox10 or Cox5a and Cox6 or attenuation of the proteolytic activity of the m-AAA protease partially restores respiration in coa2Δ cells. The matrix-localized Coa2 protein may aid in stabilizing an early Cox1 intermediate containing the nuclear subunits Cox5a and Cox6.


Sign in / Sign up

Export Citation Format

Share Document