An investigation into the anaerobic spoilage microbiota of beef carcass and rump steak cuts using high- throughput sequencing

Author(s):  
Eden Esteves ◽  
Paul Whyte ◽  
John Mills ◽  
Gale Brightwell ◽  
Tanushree B Gupta ◽  
...  

Abstract The presence of anaerobic microflora on fresh beef carcass and rump steaks, which may contribute to meat spoilage, was explored in this study. A total of 120 carcass and 120 rump steak swabs were collected immediately after slaughtering and boning, respectively from five meat plants, anaerobically incubated and enriched d at 4°C for 3 weeks. This was followed by DNA extraction and 16S rRNA amplicon sequencing using the Illumina MiSeqTM, with subsequent bioinformatics analysis. The enriched microbiota of the samples was classified and grouped into 149 operational taxonomic units (OTUs). The microbiota recovered from both sample types consisted mainly of Carnobacterium, with an average relative abundance of 28.4% and 32.8% in beef carcasses and beef rump steaks, respectively. This was followed by Streptococcus, Serratia, Lactococcus, Enterococcus, Escherichia-Shigella, Raoultella and Aeromonas ranging from 1.5–20% and 0.1–29.8% in enriched carcasses and rump steak swabs, respectively. Trichococcus, Bacteroides, Dysgomonas, Providencia, Paraclostridium and Proteus were also present ranging from 0–0.8% on carcass and 0–1.8% on rump steak swabs, respectively. Alpha and Beta diversity measurements showed limited diversity between the two sample types, but some differences between samples from the beef plants investigated were evident. This study highlights the presence of potential spoilage bacteria, mainly anaerobic genera on and between carcass and rump steaks, as an indication of contamination on and between these samples.

Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


2019 ◽  
Vol 82 (8) ◽  
pp. 1283-1291 ◽  
Author(s):  
HECHAO DU ◽  
XIUXIU LI ◽  
ZHAOXIN LU ◽  
XIAOMEI BIE ◽  
HAIZHEN ZHAO ◽  
...  

ABSTRACT The use of natural preservatives has attracted considerable attention owing to their generally safe and environmentally friendly properties. In this study, we investigated the effects of the preservative A1, composed of plantaricin 163, thymol, and surfactin, on bacterial communities and storage quality of refrigerated crucian carp. A total of 522 operational taxonomic units belonging to 20 phyla and 272 genera were identified by high-throughput sequencing, showing a comprehensive coverage of bacterial composition of crucian carp. In untreated samples after spoilage, Brochothrix was the predominant genus, followed by Aeromonas and Pseudomonas. After treatment with A1, the growth of these spoilage bacteria was significantly inhibited according to high-throughput sequencing and plate counts, and Lactococcus became the most abundant organism at the end of storage. Meanwhile, compared with control samples, the shelf life of A1-treated samples extended from 3 to 12 days on the basis of the sensory evaluation and the total viable counts. Furthermore, the total volatile basic nitrogen, thiobarbituric acid, and pH values for A1-treated samples were significantly lower than that of control samples. The results indicate that preservative A1 has potential commercial application in the preservation of refrigerated crucian carp.


Author(s):  
Marco Enrique Mechan Llontop ◽  
Long Tian ◽  
Parul Sharma ◽  
Logan Heflin ◽  
Vivian Angelica Bernal Galeano ◽  
...  

Plant microbiota play essential roles in plant health and crop productivity. Comparisons of community composition have suggested seeds, soil, and the atmosphere as reservoirs of phyllosphere microbiota. After finding that leaves of tomato (Solanum lycopersicum) plants exposed to rain carried a higher microbial population size than leaves of tomato plants not exposed to rain, we experimentally tested the hypothesis that rain is a so far neglected reservoir of phyllosphere microbiota. Rain microbiota were thus compared with phyllosphere microbiota of tomato plants either treated with concentrated rain microbiota, filter-sterilized rain, or sterile water. Based on 16S rRNA amplicon sequencing, one-hundred and four operational taxonomic units (OTUs) significantly increased in relative abundance after inoculation with concentrated rain microbiota but no OTU significantly increased after treatment with either sterile water or filter-sterilized rain. Some of the genera to which these 104 OTUs belonged were also found at higher relative abundance on tomatoes exposed to rain outdoors than on tomatoes grown protected from rain in a commercial greenhouse. Taken together, these results point to precipitation as a reservoir of phyllosphere microbiota and show the potential of controlled experiments to investigate the role of different reservoirs in the assembly of phyllosphere microbiota.


Metabolites ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 226 ◽  
Author(s):  
Seung-Ho Seo ◽  
Tatsuya Unno ◽  
Seong-Eun Park ◽  
Eun-Ju Kim ◽  
Yu-Mi Lee ◽  
...  

The objective of this study was to examine the anti-colitis activity of Jakyakgamcho-tang (JGT) in dextran sulfate sodium (DSS)-induced colitis and explore changes of the gut microbial community using 16S rRNA amplicon sequencing and metabolomics approaches. It was found that treatment with JGT or 5-aminosalicylic acid (5-ASA) alleviated the severity of colitis symptoms by suppressing inflammatory cytokine levels of IL-6, IL-12, and IFN-γ. The non-metric multidimensional scaling analysis of gut microbiome revealed that JGT groups were clearly separated from the DSS group, suggesting that JGT administration altered gut microbiota. The operational taxonomic units (OTUs) that were decreased by DSS but increased by JGT include Akkermansia and Allobaculum. On the other hand, OTUs that were increased by DSS but decreased by 5-ASA or JGT treatments include Bacteroidales S24-7, Ruminococcaceae, and Rikenellaceae, and the genera Bacteroides, Parabacteroides, Oscillospira, and Coprobacillus. After JGT administration, the metabolites, including most amino acids and lactic acid that were altered by colitis induction, became similar to those of the control group. This study demonstrates that JGT might have potential to effectively treat colitis by restoring dysbiosis of gut microbiota and host metabolites.


2020 ◽  
Author(s):  
Minghan Huang ◽  
Sihan Li ◽  
Youcheng He ◽  
Cuili Lin ◽  
Yueming Sun ◽  
...  

Abstract Chronic atrophic gastritis (CAG) was well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. Present study was design to identified the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qing huayin (QHY) as well as antibiotic on model rats. Result shown the overall structure alteration of bacterial appeared under medicine applied, antibiotic caused a marked depletion in bacterial diversity and richness, the enrichment of Firmicutes (85.1-90.7%) in antibiotic-free convert to Bacteroidetes (30.7-34.6%) in antibiotic-added model rat were demonstrated. Firmicutes was most dominant phylum and accounting for 85.1%-90.5% and significantly decreased till 21.9%-68.5% in antibiotic-added treatments. Especially QHY-treated show highest RA of Firmicutes (90.5%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG which attributed to close relation with the modulatory of internal bacterial communities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chih-Wei Wang ◽  
Yu-Hsiang Yu ◽  
Chun-Yao Wu ◽  
Ru-Ying Feng ◽  
Kshitij Tandon ◽  
...  

Wilt disease of roselle (Hibiscus sabdariffa L.) is common in Taiwan; however, the causative agent remains unknown. The stems of wilted roselle are browned, slightly constricted, and covered by white aerial hyphae, suggesting that potential pathogens may originate from soil. To identify the potential pathogens, we conducted a rhizosphere microbiota survey in phenotypically healthy and diseased plants through fungal internal transcribed spacer (ITS) and bacterial 16S rRNA amplicon sequencing for uncovering the microbial compositions in the roselle rhizosphere. The fungal family Nectriaceae exhibited significantly higher abundance in diseased rhizospheres than in healthy rhizospheres, and this bacterial community was more specific to geography (i.e., plot-dependent) than to rhizosphere disease status. However, a few bacterial groups such as Bacilli were associated with the healthy rhizosphere. Fusarium species were the most dominant species of Nectriaceae in the survey and became the main target for potential pathogen isolation. We successfully isolated 119 strains from diseased plants in roselle fields. Koch’s postulates were used to evaluate the pathogenicity of these strains; our results indicated that Fusarium solani K1 (FsK1) can cause wilting and a rotted pith in roselles, which was consistent with observations in the fields. This is the first demonstration that F. solani can cause roselle wilt in Taiwan. Furthermore, these newly isolated strains are the most dominant operational taxonomic units detected in ITS amplicon sequencing in diseased rhizospheres, which serves as further evidence that F. solani is the main pathogen causing the roselle wilt disease. Administration of Bacillus velezensis SOI-3374, a strain isolated from a healthy roselle rhizosphere, caused considerable anti-FsK1 activity, and it can serve as a potential biocontrol agent against roselle wilt disease.


2016 ◽  
Author(s):  
Maxime Galan ◽  
Maria Razzauti ◽  
Emilie Bard ◽  
Maria Bernard ◽  
Carine Brouat ◽  
...  

SummaryHuman impact on natural habitats is increasing the complexity of human-wildlife interfaces and leading to the emergence of infectious diseases worldwide. Highly successful synanthropic wildlife species, such as rodents, will undoubtedly play an increasingly important role in transmitting zoonotic diseases. We investigated the potential for recent developments in 16S rRNA amplicon sequencing to facilitate the multiplexing of large numbers of samples needed to improve our understanding of the risk of zoonotic disease transmission posed by urban rodents in West Africa. In addition to listing pathogenic bacteria in wild populations, as in other high-throughput sequencing (HTS) studies, our approach can estimate essential parameters for studies of zoonotic risk, such as prevalence and patterns of coinfection within individual hosts. However, the estimation of these parameters requires cleaning of the raw data to mitigate the biases generated by HTS methods. We present here an extensive review of these biases and of their consequences, and we propose a comprehensive trimming strategy for managing these biases. We demonstrated the application of this strategy using 711 commensal rodents collected from 24 villages in Senegal, including 208 Mus musculus domesticus, 189 Rattus rattus, 93 Mastomys natalensis and 221 Mastomys erythroleucus. Seven major genera of pathogenic bacteria were detected in their spleens: Borrelia, Bartonella, Mycoplasma, Ehrlichia, Rickettsia, Streptobacillus and Orientia. The last five of these genera have never before been detected in West African rodents. Bacterial prevalence ranged from 0% to 90% of individuals per site, depending on the bacterial taxon, rodent species and site considered, and 26% of rodents displayed coinfection. The 16S rRNA amplicon sequencing strategy presented here has the advantage over other molecular surveillance tools of dealing with a large spectrum of bacterial pathogens without requiring assumptions about their presence in the samples. This approach is therefore particularly suitable for continuous pathogen surveillance in the context of disease monitoring programs.


2021 ◽  
Author(s):  
Minghan Huang ◽  
Sihan Li ◽  
Youcheng He ◽  
Cuili Lin ◽  
Yueming Sun ◽  
...  

Abstract Chronic atrophic gastritis (CAG) is well-known related with multiple pathogenic factors and normally therapies comprised by western or Chinese medicines. The present study was designed to identify the bacterial community characterized by 16S rRNA amplicon sequencing and determine the modulate affection of bacterial composition response western and Chinese medicine Qinghuayin (QHY) as well as antibiotic on model rats. The result shown the overall structure alteration of bacterial appeared under medicine intervened, antibiotic caused a marked depletion in bacterial diversity and richness. The enrichments of Firmicutes (85.1-90.7%) in antibiotic-free converts into Bacteroidetes (30.7-34.6%) in antibiotic-added model rat were demonstrated. Firmicutes as the most dominant phylum in antibiotic-free treatments and significantly decreased till 21.9%-68.5% in antibiotic-added treatments. Especially QHY-treated rats showed highest RA of Firmicutes (90.7%) and the amelioration of CAG using QHY attributed by beneficial bacterial enrichment, especially Ruminococcus, Lactobacillus and Bifidobacterium. In addition, alpha and beta diversity analysis also demonstrated the clear dispersion and aggregation that revealed the alteration and steady of bacterial community structures. In summary, QHY has potential application value in the treatment of CAG, which attributed to close relation with the modulatory of internal bacterial communities.


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 85
Author(s):  
Allison M. Spring ◽  
Kenneth D. Domingue ◽  
Thomas V. Kerber ◽  
Margaret M. Mooney ◽  
Rebecca L. Hale ◽  
...  

Land use influences the composition of near-surface airborne bacterial communities, and bacteria can be transported through the atmosphere at global scales. The atmosphere mixes vertically, but rigorously assessing whether the effects of land use on atmospheric communities extends to higher altitudes requires examining communities from multiple altitudes collected at a stable location and timeframe. In this study, we collected near-surface (<2 m) and higher-altitude (150 m) air samples from three sites in an agricultural/developed location and a forested/undeveloped location. We used bacterial 16S rRNA amplicon sequencing to compare communities and predict functionality by altitude. Higher-altitude and near-surface communities did not differ in composition within each location. Communities collected above the undeveloped location were equally variable at both altitudes; higher-altitude samples from the developed location predominantly contained Firmicutes and were less variable than near-surface samples. We also compared airborne taxa to those present in soil and snow. Communities from higher-altitude samples above the developed location contained fewer overlapping taxa with soil and snow sources, and overlapping Operational Taxonomic Units (OTUs) among the three sources differed by location. Our results suggest that land use affects the composition of both near-surface and higher-altitude airborne bacterial communities and, therefore, may influence broad bacterial dispersal patterns. This small-scale pilot study provides a framework for simultaneously examining local and regional airborne microbial communities that can be applied to larger studies or studies using different types of samplers.


Sign in / Sign up

Export Citation Format

Share Document