scholarly journals Investigation of the Nodularisation Propensity of Calcined Cashew-Nut Shell-Ash in Cast-Iron Melt Graphite

2021 ◽  
Vol 18 (1) ◽  
pp. 1-8
Author(s):  
O.I. Sekunowo ◽  
J.O. Ugboaja ◽  
J.A. Tiamiyu

Production of ductile iron using ferrosilicon-magnesium master alloy in melt treatment is currently fraught with challenges bothering on cost and availability. In this study the suitability of cashew nut shells ash (CNSA) as a viable alternative to magnesium master alloys employed in the treatment of molten cast iron for enhanced mechanical properties was studied. The carbonized CNSA used varied from 2-10 wt. % to treat different heat batches; CA1-CA5 containing varied amount of CNSA, CaO and FeSi in the molten cast iron. The cast samples were subjected to both mechanical characterisation (tensile, hardness and impact) and microstructural analysis using Instron electromechanical machine, impact tester and scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS). Results show that the 8 wt. % CNSA addition demonstrated the best mechanical properties comparable to ASTM A536 ferritic ductile cast iron. Specifically, the 8 wt. % CNSA cast samples exhibited 433 MPa tensile strength, 144HRC hardness and ductility of 14.7%. Contributions to improved mechanical properties may be attributed to the development of sufficient fractions of graphite nodules during melt treatment with CNSA. These outcomes are a boost both to the production of quality ductile irons and a cleaner environment. Keywords: Nodularisation, ductile-iron, cashew-nut, ferrosilicon-magnesium alloy, mechanical properties

2020 ◽  
Vol 998 ◽  
pp. 42-47
Author(s):  
Alena Pribulová ◽  
Peter Futaš ◽  
Marcela Pokusova

Worldwide production of ductile iron castings reached in year 2017 26,428,148 metric tons, which is 34% of the total weight of all castings made from cast iron. The most significant increase in ductile iron castings was recorded in Slovakia, up to 78.6%. Castings from ductile iron have a very huge utilization thanks their very good foundry and mechanical properties. The current economic situation in all industries forces entrepreneurs and producers to rationalize production and reduce production costs, with a worldwide trend to increase the share of steel scrap, a technology for the production of ductile cast iron. The paper describes the results of research focused on the effect of charge composition, mainly the share of scrap steel on the final properties and structure of ductile iron EN-GJS-500-7 under the operating conditions of foundry. Six melts with different charge composition were made. The samples from all melts were taken and chemical analysis, microstructure analysis and testing on mechanical properties were made on them. The mechanical properties of produced globular cast irons were according with the relevant standard. It is important to mention that there has been a significant increase in strength characteristics in melts in which the carbon content exceeded 4% (CE = 4.7 and 4.8%, respectively).


2010 ◽  
Vol 139-141 ◽  
pp. 235-238
Author(s):  
De Qiang Wei

In this paper, the low alloy bainite ductile cast iron has been obtained by a new heat treatment technique of the step austempering in room-temperature machine oil. The effects of element boron, manganese and copper on structure and mechanical properties of the bainite ductile cast Iron in above-mentioned process are investigated. The phenomenon, hardness lag of the alloyed bainite ductile cast Iron, has been discussed. It shows that after the step austempering in room-temperature machine oil, the hardness will increases with the time. It is found that boron and manganese can increase the hardness and reduce the impact strength while copper can increase the impact strength. The results show that reasonable alloyed elements can improve mechanical properties of the bainite ductile cast Iron. Essentially, hardness lag of the alloyed bainite ductile cast Iron is resulted from solute drag-like effect.


2017 ◽  
Vol 62 (4) ◽  
pp. 2273-2280
Author(s):  
B. Mrzygłód ◽  
A. Kowalski ◽  
I. Olejarczyk-Wożenska ◽  
T. Giętka ◽  
M. Głowacki

Abstract The results of examinations of microstructure and an analysis of its impact on selected mechanical properties of austempered ductile iron (ADI) were presented in the paper. The ADI was produced from the ductile iron containing 1.56% Ni only alloying addition. The effect of the austempering time and temperature on the microstructure and mechanical properties of the examined cast iron was considered. Constant conditions of austenitizing were assumed and six variants of the austempering treatment were adopted. The studyof mechanical properties included a static tensile test, Charpy impact strength test and Brinellhardness measurement. This work complements the knowledge about alloying additions effect on microstructure and mechanical properties of ADI and focuses on the impact of a single alloying element (Ni).


2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Jugal Kishore Mendu ◽  
Rama Mohan Rao Pannem

2014 ◽  
Vol 59 (3) ◽  
pp. 1037-1040 ◽  
Author(s):  
I. Vasková ◽  
M. Hrubovčáková ◽  
J. Malik ◽  
Š. Eperješi

Abstract Ductile cast iron (GS) has noticed great development in last decades and its boom has no analogue in history humankind. Ductile iron has broaden the use of castings from cast iron into areas, which where exclusively domains for steel castings. Mainly by castings, which weight is very high, is the propensity to shrinkage creation even higher. Shrinkage creation influences mainly material, construction of casting, gating system and mould. Therefore, the main realized experiment was to ascertain the influence of technological parameters of furane mixture on shrinkage creation in castings from ductile iron. Together was poured 12 testing items in 3 moulds forto determine and compare the impact of various technological parameters forms the propensity for shrinkage in the casting of LGG.


2014 ◽  
Vol 107 (17) ◽  
pp. 32-35 ◽  
Author(s):  
P. S.Hiremath ◽  
Anita Sadashivappa ◽  
Prakash Pattan

2021 ◽  
Vol 15 (4) ◽  
pp. 504-509
Author(s):  
Imre Kiss

The objectives of this research is to study and understand the nodulizing of ductile iron using in-ladle treatment process. Among the more common nodulizing agents is magnesium (Mg) which is conventionally added to the cast iron by combining suitable alloys of one or both of these elements with molten cast iron. Depending on the characteristics of each master alloy used as nodulizer, different treatment methods and techniques are used, among these, the most widely used being in-ladle, in-mould, and flow-through, the first being the most used. This research deals with the parameters, that affect the quality of ductile iron produced using in-ladle treatment process. The parameters involved are the percentage of magnesium–ferrosilicon (Fe–Si–Mg) used and the nodulizing technique. In-ladle treatment used consists of a deep pocket into the bottom of ladle, in which magnesium–ferrosilicon is placed into it together with a steel scrap barrier (steel sheets) or calcium carbide. This study, take into account, the degree of assimilation of magnesium, which shows the performance of the chosen process, depending on the nodulizer used and the temperature of the treatment.


2015 ◽  
Vol 2015 (3) ◽  
pp. 24-29
Author(s):  
Денис Болдырев ◽  
Denis Boldyrev ◽  
Сергей Давыдов ◽  
Sergey Davydov ◽  
Виталий Сканцев ◽  
...  

The identity of the mechanical properties of ductile iron (QP) and cast iron with compact forms of graphite, in particular, with nodular and vermicular graphite (CSWG). Given the fundamental differences in techniques of obtaining QP and CSUG in terms of their labor, material and energy intensity at virtually the identical strength properties shown to be technically and economically preferable for the manufacture of castings of CSWG and other cast iron with a compact form of graphite.


Sign in / Sign up

Export Citation Format

Share Document