scholarly journals Renewable Energy Resources Hybridization as an Efficient and Cost-Effective Alternative for Electrification

2021 ◽  
Vol 18 (3) ◽  
pp. 174-183
Author(s):  
K.R. Kamil ◽  
A.O. Yusuf ◽  
S.A. Yakubu ◽  
S.B. Seriki

Majority of electricity generation in Nigeria comes from fossil fuels, with about two-thirds of thermal power derived from natural gas and the rest from oil, resulting in the emission of carbon dioxide (𝐶𝑂2). With the prevailing global climate change, shifting to renewable energy would reduce the greenhouse gas emission which would be the salvaging option to help our degrading environment. The aim of the resource’s hybridization process is to generate enough electricity that would help the supplementing for the inadequate electricity supply in the local province at the least detrimental effect on the environment. This work discusses the renewable energy potential of Nigeria and raises the possibility of having Nigeria electricity grid powered by small, medium and large-scale renewable energy systems. The hybridised power generation system simulations were done using HOMER simulation software. The hybridisation of the resources was able to generate 149,313 kWh/yr to adequately sustain the estimated electrical load of 126,027kWh/yr. Conclusively, cost effectiveness of the individual and hybridised systems was also considered.

2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


2011 ◽  
Vol 347-353 ◽  
pp. 3846-3855 ◽  
Author(s):  
Ali Baniyounes ◽  
Gang Liu ◽  
M. G. Rasul ◽  
M. M. K. Khan

In Australia the future demand for energy is predicted to increase rapidly. Conventional energy resources soaring prices and environmental impact have increased the interest in renewable energy technology. As a result of that the Australian government is promoting renewable energy; such as wind, geothermal, solar and hydropower. These types of energy are believed to be cost-effective and environmentally friendly. Renewable energy availability is controlled by climatic conditions such as solar radiation, wind speed and temperature. This paper aims to assess the potential of renewable energy resources, in particular wind and solar energy in an Australian subtropical region (Central and North Queensland) namely, Gladstone, Emerald, Rockhampton, Yeppoon, Townsville, and Cairns. Analysis is done by using the latest statistical state of Queensland energy information, along with measured data history of wind speed, solar irradiations, air temperature, relative humidity, and atmospheric pressure for those sites. This study has also shown that national assessments of solar and wind energy potential can be improved by improving local climatic data assessments using spatial databases of Central and North Queensland areas.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1110 ◽  
Author(s):  
Yunesky Masip ◽  
Anibal Gutierrez ◽  
Joel Morales ◽  
Antonio Campo ◽  
Meyli Valín

Providing energy to areas isolated from the electricity grid through the use of a smart integrated renewable energy system (SIRES) is proposed in this study for Valparaiso, Chile. The study analyzes the process of identifying the appropriate size of a SIRES considering technical and economic factors. An optimization model proposed in the literature was modified, and a subsequent spatial–temporal analysis of the different variables was conducted. The model comprises locally available renewable energy resources, such as biomass, biogas, wind power, solar photovoltaic, and thermal power. Furthermore, it was used to determine the energy potential of each of the isolated areas, identifying those areas in which the SIRES could be implemented as a sustainable solution. The design simulates the cost of the initial investment and energy generation in the chosen areas. The study also includes the selection of different system components and the use of the general model to determine the optimal combination of energy subsystems for isolated areas with the aim of minimizing the cost of energy generations. Finally, an economic evaluation showed that the use of a SIRES based mainly on solar energy supported by biomass, biogas, and mini-wind power costs approximately three times less than extending the electricity grid network.


Author(s):  
Shabir Ahmad Akhoon ◽  
Ashaq Hussain Sofi ◽  
Rayees Ahmad Khan ◽  
Ab. Mateen Tantray ◽  
Seemin Rubab

Renewable energy resources have been investigated as alternatives to fossil fuels. Though the energy density of these renewable sources is not comparable to the fossil fuels, their abundance make them highly interesting. There are three main steps in the renewable energy utilization: harvesting, conversion, and storage. Thus, after harvesting renewable energy, storing this energy is an important aspect for its large-scale end use. Considering the fact that the energy is a basic need for life on earth, there has been a strong scientific temperament towards the renewable energy utilization. The electrical energy storage maintains the key to promote the use of renewable energy. Among the storage devices, the rechargeable lithium ion batteries (LIBs) are the most promising energy storage devices. Among various cathodes proposed for LIBs, the most promising one is the spinel lithium manganese oxide (LiMn2O4). Its non-toxicity, low cost, abundance, and ease of synthesis, besides being environmentally friendly, make it suitable for next generation green LIBs.


2012 ◽  
Vol 512-515 ◽  
pp. 1106-1112
Author(s):  
Da Wei Hu ◽  
Yan Min Wang ◽  
Ai Zhi Yu

Coal as the world's most widely used fossil fuels, during the combustion process large amounts of greenhouse gas emission, which has a huge impact on global climate warming. However, coal is a nonrenewable resource, and the energy conservation is imperative. This paper, through analyzed the essential of coal combustion, and the feasibility and means for coal saving by using chemical intervention combustion. After tested the practical effects of chemical intervention coal combustion catalyst, which provided by Guangzhou Fenfang Environmental Protection Technology Co., Ltd. The results shown, the as received basis net calorific value at constant volume of the selected coal sample improved 8% which was tested by an oxygen bomb calorimeter, almost 1/6 sulfur was fixed in the cinder and the practical application coal saving effects in new dry rotary kilns and thermal power plants were more than 6%. Therefore, the chemical intervention combustion method has important significance in research and practical for coal saving and reducing emissions of pollutants.


Author(s):  
Hossein Shahinzadeh ◽  
Gevork B. Gharehpetian ◽  
S. Hamid Fathi ◽  
Sayed Mohsen Nasr-Azadani

In recent years, several factors such as environmental pollution which is caused by fossil fuels and various diseases caused by them from one hand and concerns about the dwindling fossil fuels and price fluctuation of the products and resulting effects of these fluctuations in the economy from other hand has led most countries to seek alternative energy sources for fossil fuel supplies. Such a way that in 2006, about 18% of the consumed energy of the world is obtained through renewable energies. Iran is among the countries that are geographically located in hot and dry areas and has the most sun exposure in different months of the year. Except in the coasts of Caspian Sea, the percentage of sunny days throughout the year is between 63 to 98 percent in Iran. On the other hand, there are dispersed and remote areas and loads far from national grid which is impossible to provide electrical energy for them through transmission from national grid, therefore, for such cases the renewable energy technologies could be used to solve the problem and provide the energy. In this paper, technical and economic feasibility for the use of renewable energies for independent systems of the grid for a dispersed load in the area on the outskirts of Isfahan (Sepahan) with the maximum energy consumption of 3Kwh in a day is studied and presented. In addition, the HOMER simulation software is used as the optimization tool.


2010 ◽  
Vol 1 (2) ◽  
pp. 68
Author(s):  
Edgars Čubars

Increasing demand for energy, limited resources of fossil fuel, as well as pollution of the environment and changes of the global climate, have raised more interest in renewable resources. Support to the use of renewable resources has become a very important part of the European Union’s policy. The use of reeds like renewable energy resources allows saving fossil fuels. This paper presents the findings on the reed resources in lakes of Latgale (region in Latvia). The investigation of reed resources shows that the resources in the region are situated in a very uneven way. The greatest amount of reed resources is concentrated in the biggest lake in Latvia - Lubana Lake as well as near it. Using direct measurement methods and metering in the distance, it was stated that the total reed resources of Lubana Lake are 8,203? 2,999 tons, occupy 882 hectares and are situated in 429 reed blocks. Summary resources of Latgale region are 19,862? 7,409 tons. The amount of heat that can be obtained using reed resources of Latgale region is equivalent to 10,543 tons of natural gas or 8,802 tons of petroleum, or 13,092- 21,348 tons of coal (it depends on the heating of coal), or 7,675 tons of fuel, or 8,712 – 12,199 tons of oil (depends on the heating of oil).


Author(s):  
Bukurije Hoxha ◽  
Bedri Dragusha

<span lang="EN-US">Kosovo has limited renewable energy resources and its power generation sector is based on fossil fuels. Such a situation emphasizes the importance of active research and efficient use of renewable energy potential. According to the analysis of meteorological data for Kosovo, it can be concluded that among the most attractive potential wind power sites are the locations known as Kitka (42° 29' 41" N and 21° 36' 45" E) and Koznica (42° 39′ 32″ N, 21° 22′30″E). The two terrains in which the analysis was carried out are mountain areas, with altitudes of 1142 m (Kitka) and 1230 m (Koznica). the same measuring height, about 84 m above the ground, is obtained for these average wind speeds: Kitka 6,667 m/s and Koznica 6,16 m/s. Since the difference in wind speed is quite large versus a difference in altitude that is not being very large, analyses are made regarding the terrain characteristics including the terrain relief features. In this paper it will be studied how much the roughness of the terrain influences the output energy. Also, that the assumption to be taken the same as to how much they will affect the annual energy produced.</span>


2021 ◽  
Vol 11 (2) ◽  
pp. 67-71
Author(s):  
Vidya Jose

The huge global energy consumption has raised concerns over the depletion in readily available conventional energy resources. Besides, there are harmful atmospheric effects of fossil fuels and the qualms of future energy resources. The world hence is in dire need of new renewable energy sources that are cheap, non-polluting, environmentally friendly, and clean. This is the only way we can stop using fossil. Hydrogen is considered as an ideal fuel for the future because of its high energy content and its clean combustion to water. However, extensive technologies are required to introduce hydrogen as an alternative clean and cost-effective future fuel, which brings about the relevance of the exploitation of the microorganisms for large-scale renewable energy production. Reports of photobiological hydrogen production by oxygenic photosynthetic microbes, such as green algae and cyanobacteria and by anaerobic photosynthesis, are summarized in this paper, with a focus on the major obstacles that must be overcome by scientific and technical breakthroughs to make way for commercially feasible energy. The principle, progress, and prognosis of photobiological hydrogen as a renewable energy source are reviewed.


Author(s):  
Bahadır Demirel ◽  
Hasan Pınar

Fossil fuels, which are the most widely used and long-used primary energy sources in the world, are estimated to be run out in the near future depending on this amount of usage. As a result of this consumption, the threat of global warming is growing. Increasing the use of renewable energy resources in order to reduce fossil fuel consumption, use of renewable energy resources is a great opportunity to reduce this environmental damage. In this study, the possibilities of evaluating the agricultural residues of banana plants which are intensively cultivated especially in the Mediterranean Region as an energy source were investigated. As a result of agricultural activities, approximately 209,448 tons of dry biomass residues are produced for 498,888 tons /year banana plant in 2018 and it is calculated that these residues will have 987 MW energy potential when recycled as energy. Depending on this potential banana residues, availability of facilities and contribute to the country's economy be able to be converted to energy in Turkey were discussed as solid biofuel.


Sign in / Sign up

Export Citation Format

Share Document