scholarly journals Stem Cells: Prospects and Potential Applications in Tanzania: A review

2020 ◽  
Vol 21 (2) ◽  
pp. 1-8
Author(s):  
Afadhali Denis Russa

Stem cell technology and its application in regenerative medicine is the future gateway for the treatment of most non-communicable diseases (NCDs). As the burden of NCDs continues to rises globally, regenerating the cells, tissues and organs will be the mainstream treatment option. The world is prepared for this intriguing but promising avenue of biomedical technology and medicine but Africa is grossly lagging far behind. African governments, universities, research and health institutions need to take a leading role in empowering and mainstreaming stem cell research.  Moreover, for Africa, there is a huge potential for translating stem cell technology into clinical treatments due to the fact that there are limited treatment options for life-threatening forms of NCDs.  Some African countries have well-developed stem cell facilities and large-scale stem cell therapy centers. The use of adult stem cells in liver failure, diabetes and cardiac infarcts has shown success in some African countries. The present work reviews the status, potential and future prospects of stem cell technology and regenerative medicine in Tanzania with particular emphasis on the adult stem cells applicability into the immediate use inpatient care.  The paper also reviews the available cell identification systems and markers and moral and ethical aspects of stem cell science necessary in the translational treatment regimens. 

2013 ◽  
Vol 810 ◽  
pp. 41-76 ◽  
Author(s):  
Kakon Nag ◽  
Toshihiro Akaike

Chimeric proteins have been used for years for various purposes ranging from biomaterials to candidate drug molecules, and from bench to bulk. Regenerative medicine needs various kinds of proteins for providing essential factors for maintaining starting cells, like induced pluripotent stem cells (iPSC), and renewal, proliferation, targeted differentiation of these cells, and as extracellular matrix for the experimental cells. However, there are several challenges associated with making functional chimeric proteins for effective application as biomaterial in this field. Fc-chimeric protein technology could be an effective solution to overcome many of them. These tailored proteins are recently becoming superior choice of biomaterials in stem cell technology and regenerative medicine due to their specific advantageous biophysical and biochemical properties over other chimeric forms of same proteins. Recent advances in recombinant protein-related science and technology also expedited the popularity of this kind of engineered protein. Over the last decade our lab has been pioneering this field, and we and others have been successfully applied Fc-chimeric proteins to overcome many critical issues in stem cell technologies targeting regenerative medicine and tissue engineering. Fc-chimeric protein-based biomaterials, specifically, E-cad-Fc have been preferentially applied for coating of cell culture plates for establishing xenogeneic-agent free monolayer stem cell culture and their maintenance, enhanced directed differentiation of stem cells to specific lineages, and non-enzymatic on-site one-step purification of target cells. Here the technology, recent discoveries, and future direction related with the E-cad-Fc-chimeric protein in connection with regenerative medicine are described.


2021 ◽  
Vol 8 (5) ◽  
pp. 68
Author(s):  
Diogo E.S. Nogueira ◽  
Joaquim M.S. Cabral ◽  
Carlos A.V. Rodrigues

Research on human stem cells, such as pluripotent stem cells and mesenchymal stromal cells, has shown much promise in their use for regenerative medicine approaches. However, their use in patients requires large-scale expansion systems while maintaining the quality of the cells. Due to their characteristics, bioreactors have been regarded as ideal platforms to harbour stem cell biomanufacturing at a large scale. Specifically, single-use bioreactors have been recommended by regulatory agencies due to reducing the risk of product contamination, and many different systems have already been developed. This review describes single-use bioreactor platforms which have been used for human stem cell expansion and differentiation, along with their comparison with reusable systems in the development of a stem cell bioprocess for clinical applications.


2013 ◽  
Vol 2 (6) ◽  
pp. 296-305 ◽  
Author(s):  
Ruoxue Feng ◽  
Chistopher Lengner

2012 ◽  
Vol 1 (1) ◽  
pp. 75-82
Author(s):  
Jordan Greenberg ◽  
Veronica Fortino ◽  
Daniel Pelaez ◽  
Herman S. Cheung

Author(s):  
Clara Pinto-Correia

What was it like to be a young woman in a laboratory that was cloning some of the first mammals? What were the motivations of the people in the laboratory? And why did people want to clone animals in the first place? How did the failure to clone healthy mammals lead to stem cell technology and the banking of umbilical cord stem cells? This first-person account looks at the very human side of cloning.


2019 ◽  
Vol 16 (1) ◽  
pp. 3-32 ◽  
Author(s):  
Gele Liu ◽  
Brian T. David ◽  
Matthew Trawczynski ◽  
Richard G. Fessler

AbstractOver the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.


Hematology ◽  
2003 ◽  
Vol 2003 (1) ◽  
pp. 398-418 ◽  
Author(s):  
George Q. Daley ◽  
Margaret A. Goodell ◽  
Evan Y. Snyder

Abstract Studies of the regenerating hematopoietic system have led to the definition of many of the fundamental principles of stem cell biology. Therapies based on a range of tissue stem cells have been widely touted as a new treatment modality, presaging an emerging new specialty called regenerative medicine that promises to harness stem cells from embryonic and somatic sources to provide replacement cell therapies for genetic, malignant, and degenerative conditions. Insights borne from stem cell biology also portend development of protein and small molecule therapeutics that act on endogenous stem cells to promote repair and regeneration. Much of the newfound enthusiasm for regenerative medicine stems from the hope that advances in the laboratory will be followed soon thereafter by breakthrough treatments in the clinic. But how does one sort through the hype to judge the true promise? Are stem cell biologists and the media building expectations that cannot be met? Which diseases can be treated, and when can we expect success? In this review, we outline the realms of investigation that are capturing the most attention, and consider the current state of scientific understanding and controversy regarding the properties of embryonic and somatic (adult) stem cells. Our objective is to provide a framework for appreciating the promise while at the same time understanding the challenges behind translating fundamental stem cell biology into novel clinical therapies.


2018 ◽  
Vol 40 (11) ◽  
pp. 1801-1806 ◽  
Author(s):  
Masanori Sawada ◽  
Daisuke Sugiyama ◽  
Takenobu Nii ◽  
Katsuhiro Konno ◽  
Hardy T.S. Kagimoto

2010 ◽  
Vol 104 (07) ◽  
pp. 39-44 ◽  
Author(s):  
Qizhou Lian ◽  
Yenyen Chow ◽  
Miguel Esteban ◽  
Duanqing Pei ◽  
Hung-Fat Tse

SummaryRecent advances in stem cell biology have transformed the understanding of cell physiology and developmental biology such that it can now play a more prominent role in the clinical application of stem cell and regenerative medicine. Success in the generation of human induced pluripotent stem cells (iPS) as well as related emerging technology on the iPS platform provide great promise in the development of regenerative medicine. Human iPS cells show almost identical properties to human embryonic stem cells (ESC) in pluripotency, but avoid many of their limitations of use. In addition, investigations into reprogramming of somatic cells to pluripotent stem cells facilitate a deeper understanding of human stem cell biology. The iPS cell technology has offered a unique platform for studying the pathogenesis of human disease, pharmacological and toxicological testing, and cell-based therapy. Nevertheless, significant challenges remain to be overcome before the promise of human iPS cell technology can be realised.


Sign in / Sign up

Export Citation Format

Share Document