scholarly journals Anti-proliferation effect of Scutellaria barbata D. Don extract on lung cancer

2021 ◽  
Vol 18 (9) ◽  
pp. 1867-1872
Author(s):  
Zhang Hu ◽  
Duan Jing

Purpose: To investigate the effect of Scutellaria barbata D. Don extract (SBDE) on apoptosis and proliferation in A549 human lung cancer cells. Methods: Inverted microscope was used to observe morphological changes in A549 cells after exposure to SBDE. Trypan blue staining of living cells was applied to construct cell growth curve after treatment with varying concentrations of SBDE. The influence of SBDE on cell proliferation, apoptosis and cell cycle was determined by MTT assay while protein expressions of key apoptosis-related enzymes were evaluated by immuno-cytochemical method. Results: SBDE inhibited the growth of A549 lung cancer cells at a concentration range of 20 - 160 μg/mL. Flow cytometry showed that SBDE induced apoptosis in the A549 cells. The proportion of cells in G0/G1-phase increased significantly (p < 0.01), while the proportion of cells in S-phase and G2/Mphase decreased correspondingly, indicating that the cells were in G0/G1-phase arrest. Cell cycle arrest and apoptosis-inducing effect gradually increased with increase in SBDE concentration. With increasing concentrations of SBDE, there were significant increases in the expressions of caspase-3 (p < 0.05), caspase-8 (p < 0.01) and caspase-9 (p < 0.05), and significant decreases in Ki-67 (p < 0.01) and p21 ras protein (p < 0.01). Conclusion: SBDE exerts significant inhibitory effect on the proliferation of A549 lung cancer cells, which can be developed for the treatment of lung cancer patients.

2021 ◽  
Vol 18 (9) ◽  
pp. 1949-1954
Author(s):  
Wei-guo Zhang ◽  
Qin Liu ◽  
Cai-peng Lei

Purpose: To investigate the effect of Forsythia suspensa extract (FSE) on apoptosis and proliferation in A549 human lung cancer cells. Methods: Inverted microscope was employed to observe morphological changes in A549 cells after exposure to FSE. Trypan blue staining of living cells was used to construct the cell growth curve after treatment with varying concentrations of FSE. The influence of FSE on cell proliferation, apoptosis and cell cycle was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, while protein expressions of key apoptosis-related enzymes were evaluated by immunocytochemical method. Results: FSE inhibited the growth of A549 lung cancer cells at a concentration range of 10 - 150 μg/mL. Flow cytometry results showed that FSE induced apoptosis in A549 cells. The proportion of cells in G0/G1-phase increased significantly (p < 0.01), while the proportion of cells in S- and G2/M-phase decreased correspondingly, indicating that the cells were in G0/G1-phase arrest. Cell cycle arrest and apoptosis-inducing effect gradually rose with increase in FSE concentration. With increasing concentrations of FSE, there was also significant increase in the expressions of caspase-3 (p < 0.05), caspase-8 (p < 0.01) and caspase-9 (p < 0.05), but significant decrease in Ki-67 (p < 0.01) and p21 ras protein (p < 0.01). Conclusion: FSE exerts significant inhibitory effect on the proliferation of A549 lung cancer cells. Therefore, the plant can potentially be developed for the treatment of lung cancer.


2010 ◽  
Vol 29 (7) ◽  
pp. 607-614 ◽  
Author(s):  
Yong Hwan Han ◽  
Woo Hyun Park

Carbobenzoxy-Leu-Leu-leucinal (MG132) as a proteasome inhibitor has been shown to induce apoptotic cell death through formation of reactive oxygen species (ROS). In the present study, we evaluated the effects of MG132 on the growth of A549 lung cancer cells in relation to cell growth, ROS and glutathione (GSH) levels. Treatment with MG132 inhibited the growth of A549 cells with an IC50 of approximately 20 μM at 24 hours. DNA flow cytometric analysis indicated that 0.5 ∼ 30 μM MG132 induced a G1 phase arrest of the cell cycle in A549 cells. Treatment with 10 or 30 μM MG132 also induced apoptosis, as evidenced by sub-G1 cells and annexin V staining cells. This was accompanied by the loss of mitochondrial membrane potential (MMP; Δψm). The intracellular ROS levels including O2•- were strongly increased in 10 or 30 μM MG132-treated A549 cells but were down-regulated in 0.1, 0.5 or 1 μM MG132-treated cells. Furthermore, 10 or 30 μM MG132 increased mitochondrial O2•- level but 0.1, 0.5 or 1 μM MG132 decreased that. In addition, 10 or 30 μM MG132 induced GSH depletion in A549 cells. In conclusion, MG132 inhibited the growth of human A549 cells via inducing the cell cycle arrest as well as triggering apoptosis, which was in part correlated with the changes of ROS and GSH levels. Our present data provide important information on the anti-growth mechanisms of MG132 in A549 lung cancer cells in relation to ROS and GSH.


2020 ◽  
Vol 40 (10) ◽  
Author(s):  
Anfang Cui ◽  
Yuchan Xue ◽  
Xi’ao Wang ◽  
Yanhong Huang ◽  
Xiaolin Han ◽  
...  

Abstract Non–small cell lung cancer (NSCLC) is one of the most common causes of cancer-related mortality globally. However, the mechanism underlying NSCLC is not fully understood. Here, we investigated the role of cancer-related regulator of actin dynamics (CRAD) in NSCLC. We showed that CRAD was up-regulated in human NSCLC tissues and lung cancer cell lines. Lentivirus-mediated knockdown of CRAD repressed the proliferation and colony growth of A549 and H1299 cells. Apoptosis was enhanced by CRAD silencing in both cells, implicating that CRAD might maintain the survival of lung cancer cells. Microarray and bioinformatic assay revealed that CRAD directly or indirectly regulated diverse genes, including those involved in cell cycle and DNA damage repair. qRT-PCR and Western blot results confirmed the dysregulated genes as shown in microarray analysis. Claudin 4 was up-regulated in CRAD silenced A549 cells. The knockdown of Claudin 4 blocked the effects of CRAD on the expression of cell cycle and apoptosis effectors and enhanced the viability of A549 cells with CRAD down-regulation. Taken together, our findings demonstrate that CRAD acts as an oncogene in NSCLC at least partly through repressing Claudin 4.


2007 ◽  
Vol 120 (10) ◽  
pp. 905-909 ◽  
Author(s):  
Hong-li LI ◽  
Tong-shan WANG ◽  
Xiao-yu LI ◽  
Nan LI ◽  
Ding-zhi HUANG ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Du ◽  
Weiwei Chen ◽  
Lijuan Yang ◽  
Juanjuan Dai ◽  
Jiwei Guo ◽  
...  

Abstract Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Xin-Mei Lin ◽  
Shao-Bin Liu ◽  
Ying-Hua Luo ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase, p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a potential therapy for human lung cancer.


2015 ◽  
Vol 21 (4) ◽  
pp. 282 ◽  
Author(s):  
Ju Hee Park ◽  
Tae Hwan Noh ◽  
Haibo Wang ◽  
Nam Deuk Kim ◽  
Jee H. Jung

Sign in / Sign up

Export Citation Format

Share Document