Radiation (Gamma) Resistance and Postirradiation Growth of Listeria monocytogenes Suspended in Beef Bologna Containing Sodium Diacetate and Potassium Lactate†

2003 ◽  
Vol 66 (11) ◽  
pp. 2051-2056 ◽  
Author(s):  
CHRISTOPHER SOMMERS ◽  
XUETONG FAN ◽  
BRENDAN A. NIEMIRA ◽  
KIMBERLY SOKORAI

Listeria monocytogenes, a psychrotrophic foodborne pathogen, is a frequent postprocessing contaminant of ready-to-eat (RTE) meat products, including frankfurters and bologna. Ionizing radiation can eliminate L. monocytogenes from RTE meats. When they are incorporated into fine-emulsion sausages, sodium diacetate (SDA) and potassium lactate (PL) mixtures inhibit the growth of L. monocytogenes. The radiation resistance of L. monocytogenes, and its ability to proliferate during long-term refrigerated storage (9°C), when inoculated into beef bologna that contained 0% SDA–0% PL, 0.07% SDA–1% PL, and 0.15% SDA–2% PL, were determined. The radiation doses required to eliminate 90% of the viable L. monocytogenes cells were 0.56 kGy for bologna containing 0% SDA–0% PL, 0.53 kGy for bologna containing 0.07% SDA–1% PL, and 0.46 kGy for bologna containing 0.15% SDA–2% PL. L. monocytogenes was able to proliferate on bologna containing 0% SDA–0% PL during refrigerated storage, but the onset of proliferation was delayed by the addition of the SDA-PL mixtures. An ionizing radiation dose of 3.0 kGy prevented the proliferation of L. monocytogenes and background microflora in bologna containing 0.07% SDA–1% PL and in bologna containing 0.15% SDA–2% PL over 8 weeks of storage at 9°C. Little effect on lipid oxidation and color of the control bologna, or bologna containing SDA-PL mixtures, was observed upon irradiation at either 1.5 or 3.0 kGy.

2003 ◽  
Vol 66 (5) ◽  
pp. 819-824 ◽  
Author(s):  
CHRISTOPHER SOMMERS ◽  
XUETONG FAN

Listeria monocytogenes, a psychrotrophic foodborne pathogen, is a frequent postprocess contaminant of ready-to-eat(RTE) meat products, including frankfurters and bologna. Ionizing radiation can eliminate L. monocytogenes from RTE meats. Sodium diacetate (SDA) incorporated into fine-emulsion sausages inhibits the growth of L. monocytogenes. Irradiation of L. monocytogenes suspended in SDA solutions resulted in synergistic reductions of the microorganism. L. monocytogenes populations were reduced by >9 log10 units at a radiation dose of 1.5 kGy when suspended in 0.125% SDA solution. In contrast, the D10-values (the ionizing radiation doses required to reduce the population by 90%) were 0.58, 0.59, 0.57, and 0.53 kGy for L. monocytogenes populations suspended in emulsions containing 0, 0.125, 0.25, and 0.5% SDA, respectively. The D10-values for L. monocytogenes surface inoculated onto frankfurters dipped in 0, 0.125, 0.25, and 0.5% SDA solutions were 0.58, 0.53, 0.54, and 0.52 kGy, respectively. Postirradiation growth of L. monocytogenes suspended in beef bologna emulsion at 9°C was dependent on SDA concentration and ionizing radiation dose. Very small, but statistically significant, changes in bologna redness, lipid oxidation, and shear force were observed for the beef bologna emulsion with the highest SDA concentration (0.5%) and irradiation dose (3.0 kGy). SDA can inhibit the proliferation of L. monocytogenes surviving the irradiation process with minimal impact on fine-emulsion sausage color, lipid oxidation, and firmness when used within regulatory limits.


2004 ◽  
Vol 67 (10) ◽  
pp. 2195-2204 ◽  
Author(s):  
J. D. LEGAN ◽  
D. L. SEMAN ◽  
A. L. MILKOWSKI ◽  
J. A. HIRSCHEY ◽  
M. H. VANDEVEN

A central composite response surface design was used to determine the time to growth of Listeria monocytogenes as a function of four continuous variables: added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.2%), potassium lactate syrup (60% [wt/wt]; 0.25 to 9.25%), and finished-product moisture (45.5 to 83.5%) in ready-to-eat cured meat products. The design was repeated for ready-to-eat uncured meat products giving a fifth categorical variable for cure status. Products were stored at 4°C. The results were modeled using a generalized regression approach. All five main effects, six two-factor interactions, and two quadratic terms were statistically significant. The model was used to show the boundary between growth and no-growth conditions at 4°C using contour plots of time to growth. It was validated using independent challenge studies of cured and uncured products. Generally, the model predicted well, particularly for cured products, where it will be useful for establishing conditions that prevent the growth of L. monocytogenes. For uncured products, there was good agreement overall between predicted and observed times to growth, but the model is less thoroughly validated than for cured products. The model should initially only be used for screening of formulations likely to prevent growth of Listeria monocytogenes in uncured products, with recommendations subject to confirmation by challenge studies.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
E. Heintz ◽  
K. Glass ◽  
J. Lim

ObjectivesWorld’s largest outbreak of listeriosis in South Africa last year, remind us that Listeria monocytogenes contamination and growth is still of major concern in refrigerated RTE meats. The same time customers demand for clean label food safety solutions. Provian NDV, a fermented vinegar based powder, was developed to provide a clean label solution that inhibits Listeria monocytogenes during long term refrigerated storage. This document describes the effect of chemical derived acetates and Provian NDV, a novel vinegar based product, on the inhibition of Listeria monocytogenes in a cooked meat applicationMaterials and MethodsFive treatments of cured deli-style ham were tested. The pork ham contained 72–74% (w/w) moisture, 1.75 ± 0.1% (w/w) salt, and pH 6.2–6.4, 156 mg/kg sodium nitrite and 547 mg/kg sodium erythorbate. The treatments included a control without antimicrobials and different concentrations of a chemically derived acetates (0.5% and 0.75%) and Provian® NDV (0.5%, 0.65%). Cooked products were surface-inoculated with 3-log10 CFU/g of a cocktail of 5 strains of Listeria monocytogenes from the culture collection of Food research institute, Wisconsin University including serotypes 4b, 1/2a, and 1/2b. All strains were isolated from RTE- cooked meat products. Inoculated slices (100 g/package) were vacuum-packaged and stored at 4°C and 7°C for 8 to 12 wk. Per treatment triplicate samples were assayed by enumerating on modified Oxford Agar. One way ANOVA was used to analyze significance, p < 0.05. Except from the triplicate repeat, this study was conducted twice independently (trial 1, 5 treatments in triplicate and trial 2 including same treatments, also in triplicate.)ResultsControl Ham supported > 1 log increase of L. monocytogenes at 4- and 2-weeks storage at 4 and 7°C, respectively. In contrast, hams supplemented with 0.5 or 0.75% chemical acetates or 0.65% Provian® NDV inhibited the Listeria growth for 12 and 8 wk at 4 and 7°C, respectively. Inhibition of Listeria on ham supplemented with 0.5% Provian®NDV was further affected by pH and moisture. Ham supplemented with 0.5% Provian® NDV in the trial 1 (71.5% moisture, pH 6.2) delayed Listeria for 12 wk storage at 4°C, whereas individual samples of trial 1 (72.9% moisture, pH 6.3) supported growth (> 1 log increase) at 8 wk. Similar trends were observed at 7°C. The images below reflect the results of trial 1 only.ConclusionThis study confirms the efficacy of acetates on the inhibition of Listeria monocytogenes. Next, this study shows that a product based on natural fermented vinegar, Provian NDV, has a comparable growth inhibitive action in a cured ready-to eat ham. This illustrates that most relevant serotypes (4b, 1/2b and 1/2a) of Listeria moncytogenes can be controlled using an ingredient based on natural fermented vinegar.Figure 4.


2004 ◽  
Vol 67 (5) ◽  
pp. 1017-1021 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
JEFFREY E. CALL

Commercially prepared frankfurters were formulated with and without ~1.4% potassium lactate and 0.1% sodium diacetate and were subsequently processed in cellulose casings coated with and without nisin (~50,000 IU per square inch of internal surface area) to control the outgrowth of Listeria monocytogenes during refrigerated storage. The frankfurters were inoculated with ~5 log CFU per package of a five-strain mixture of L. monocytogenes and then vacuum sealed before being stored at 4° C for 60 to 90 days. Surviving organisms were recovered and enumerated by rinsing each package with 18 ml of sterile 0.1% peptone water and plating onto MOX selective agar. The data for each of two trials were averaged. In packages that contained frankfurters formulated with potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 1.15 log CFU per package after 90 days of storage. L. monocytogenes levels decreased by 0.95 log CFU per package in frankfurters that were prepared in casings that were not coated with nisin. In packages of frankfurters that were formulated without potassium lactate and sodium diacetate and prepared in nisin-coated casings, L. monocytogenes levels decreased by 0.88 log CFU per package after 15 days of storage but then increased appreciablythereafter over a 60-day period of refrigerated storage. There was also an appreciable increase in pathogen numbers during 60 days of storage in otherwise similar frankfurters formulated without potassium lactate and sodium diacetate prepared in casings that were not coated with nisin. These data confirm that potassium lactate and sodium diacetate display listeriostatic activity as an ingredient of commercial frankfurters. These data also establish that cellulose casings coated with nisin display only moderate antilisterial activity in vacuum-sealed packages of commercially prepared frankfurters during storage at 4° C.


2015 ◽  
Vol 78 (5) ◽  
pp. 927-933 ◽  
Author(s):  
ANNA C. S. PORTO-FETT ◽  
STEPHEN G. CAMPANO ◽  
BRADLEY A. SHOYER ◽  
DAVID ISRAELI ◽  
ALAN OSER ◽  
...  

We evaluated the efficacy of potassium levulinate (KLEV; 0.0, 1.0, 1.5, and 2.0%) with and without a blend of potassium propionate (0.1%) and potassium diacetate (0.1%) (KPD) versus a blend of potassium lactate (1.8%) and sodium diacetate (0.125%) (KLD) for inhibiting Listeria monocytogenes on commercially prepared, uncured turkey breast during refrigerated storage. Product formulated with KLD or KLEV (1.5%) was also subsequently surface treated with 44 ppm of a solution of lauric arginate (LAE). Slices (ca. 1.25 cm thick and 100 g) of turkey breast formulated with or without antimicrobials were surface inoculated on both the top and bottom faces to a target level of ca. 3.5 log CFU per slice with a five-strain cocktail of L. monocytogenes, vacuum sealed, and then stored at 4°C for up to 90 days. Without inclusion of antimicrobials in the formulation, pathogen levels increased by ca. 5.2 log CFU per slice, whereas with the inclusion of 1.0 to 2.0% KLEV pathogen levels increased by only ca. 2.9 to 0.8 log CFU per slice after 90 days at 4°C. When 1.0% KLEV and KPD were included as ingredients, pathogen levels increased by ca. 0.8 log CFU per slice after storage at 4°C for 90 days, whereas a decrease of ca. 0.7 log CFU per slice was observed when 1.5 or 2.0% KLEV and KPD were included as ingredients. When used alone, KPD was not effective (≥5.8-log increase). As expected, KLD was effective at suppressing L. monocytogenes in uncured turkey breast. When uncured turkey breast was formulated with KLD or KLEV (1.5%) or without antimicrobials and subsequently surface treated with LAE, pathogen levels decreased by ca. 1.0 log CFU per package within 2 h; no differences (P ≥ 0.01) were observed in pathogen levels for product surface treated with or without LAE and stored for 90 days. Our results validate the use of KLEV to inhibit outgrowth of L. monocytogenes during refrigerated storage of uncured turkey breast. KLEV is at least as effective as KLD as an antilisterial agent.


2002 ◽  
Vol 65 (4) ◽  
pp. 651-658 ◽  
Author(s):  
D. L. SEMAN ◽  
A. C. BORGER ◽  
J. D. MEYER ◽  
P. A. HALL ◽  
A. L. MILKOWSKI

A central composite second-order response surface design was employed to determine the influences of added sodium chloride (0.8 to 3.6%), sodium diacetate (0 to 0.2%), potassium lactate syrup (0.25 to 9.25%), and finished-product moisture (45.5 to 83.5%) on the predicted growth rate of Listeria monocytogenes in cured ready-to-eat (RTE) meat products. Increased amounts of both sodium diacetate (P &lt; 0.11) and potassium lactate (P &lt; 0.001) resulted in significant reductions in the growth rate constants of L. monocytogenes. Increased finished-product moisture (P &lt; 0.11) significantly increased growth rate constants. The influence of sodium chloride was not statistically significant. The second-order statistical factor for lactate was significant (P &lt; 0.01), but all two-way interactions were not. In general, predicted growth rates exceeded actual growth rates obtained from inoculation studies of four cured RTE meat products (wieners, smoked-cooked ham, light bologna, and cotto salami). The final model will be useful to food technologists in determining formulations that will result in finished cured RTE meat products in which L. monocytogenes is not likely to grow.


2006 ◽  
Vol 69 (1) ◽  
pp. 39-46 ◽  
Author(s):  
JOHN B. LUCHANSKY ◽  
GEORGE COCOMA ◽  
JEFFREY E. CALL

Surface pasteurization and food-grade chemicals were evaluated for the ability to control listeriae postprocess on cook-in-bag turkey breasts (CIBTB). Individual CIBTB were obtained directly from a commercial manufacturer and surface inoculated (20 ml) with a five-strain cocktail (ca. 7.0 log) of Listeria innocua. In each of two trials, the product was showered or submerged for up to 9 min with water heated to 190, 197, or 205°F (ca. 87.8, 91.7, or 96.1°C) in a commercial pasteurization tunnel. Surviving listeriae were recovered from CIBTB by rinsing and were then enumerated on modified Oxford agar plates following incubation at 37°C for 48 h. As expected, higher water temperatures and longer residence times resulted in a greater reduction of L. innocua. A ca. 2.0-log reduction was achieved within 3 min at 205 and 197°F and within 7 min at 190°F. In related experiments, the following treatments were evaluated for control of Listeria monocytogenes on CIBTB: (i) a potassium lactate–sodium diacetate solution (1.54% potassium lactate and 0.11% sodium diacetate) added to the formulation in the mixer and 150 ppm of acidified sodium chlorite applied to the surface with a pipette, or (ii) a potassium lactate–sodium diacetate solution only, or (iii) no potassium lactate–sodium diacetate solution and no acidified sodium chlorite. Each CIBTB was inoculated (20 ml) with ca. 5 log CFU of a five-strain mixture of L. monocytogenes and then vacuum sealed. In each of two trials, half of the CIBTB were exposed to 203°F water for 3 min in a pasteurization tunnel, and the other half of the CIBTB were not; then, all CIBTB were stored at 4°C for up to 60 days, and L. monocytogenes was enumerated by direct plating onto modified Oxford agar. Heating resulted in an initial reduction of ca. 2 log CFU of L. monocytogenes per CIBTB. For heated CIBTB, L. monocytogenes increased by ca. 2 log CFU per CIBTB in 28 (treatment 1), 28 (treatment 2), and 14 (treatment 3) days. Thereafter, pathogen levels reached ca. 7 log CFU per CIBTB in 45, 45, and 21 days for treatments 1, 2, and 3, respectively. In contrast, for nonheated CIBTB, L. monocytogenes levels increased from ca. 5 log CFU per CIBTB to ca. 7 log CFU per CIBTB in 28, 21, and 14 days for treatments 1, 2, and 3, respectively. Lastly, in each of three trials, we tested the effect of hot water (203°F for 3 min) postprocess pasteurization of inoculated CIBTB on the lethality of L. monocytogenes and validated that it resulted in a 1.8-log reduction in pathogen levels. Collectively, these data establish that hot water postprocess pasteurization alone is effective in reducing L. monocytogenes on the surface of CIBTB. However, as used in this study, the potassium lactate–sodium diacetate solution and acidified sodium chlorite were only somewhat effective at controlling the subsequent outgrowth of this pathogen during refrigerated storage.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Richard G. Kavanagh ◽  
John O’Grady ◽  
Brian W. Carey ◽  
Patrick D. McLaughlin ◽  
Siobhan B. O’Neill ◽  
...  

Magnetic resonance imaging (MRI) is the mainstay method for the radiological imaging of the small bowel in patients with inflammatory bowel disease without the use of ionizing radiation. There are circumstances where imaging using ionizing radiation is required, particularly in the acute setting. This usually takes the form of computed tomography (CT). There has been a significant increase in the utilization of computed tomography (CT) for patients with Crohn’s disease as patients are frequently diagnosed at a relatively young age and require repeated imaging. Between seven and eleven percent of patients with IBD are exposed to high cumulative effective radiation doses (CEDs) (>35–75 mSv), mostly patients with Crohn’s disease (Newnham E 2007, Levi Z 2009, Hou JK 2014, Estay C 2015). This is primarily due to the more widespread and repeated use of CT, which accounts for 77% of radiation dose exposure amongst patients with Crohn’s disease (Desmond et al., 2008). Reports of the projected cancer risks from the increasing CT use (Berrington et al., 2007) have led to increased patient awareness regarding the potential health risks from ionizing radiation (Coakley et al., 2011). Our responsibilities as physicians caring for these patients include education regarding radiation risk and, when an investigation that utilizes ionizing radiation is required, to keep radiation doses as low as reasonably achievable: the “ALARA” principle. Recent advances in CT technology have facilitated substantial radiation dose reductions in many clinical settings, and several studies have demonstrated significantly decreased radiation doses in Crohn’s disease patients while maintaining diagnostic image quality. However, there is a balance to be struck between reducing radiation exposure and maintaining satisfactory image quality; if radiation dose is reduced excessively, the resulting CT images can be of poor quality and may be nondiagnostic. In this paper, we summarize the available evidence related to imaging of Crohn’s disease, radiation exposure, and risk, and we report recent advances in low-dose CT technology that have particular relevance.


2007 ◽  
Vol 70 (10) ◽  
pp. 2297-2305 ◽  
Author(s):  
L. A. MELLEFONT ◽  
T. ROSS

Two commercially available organic acid salts, potassium lactate (PURASAL HiPure P) and a potassium lactate–sodium diacetate blend (PURASAL Opti.Form PD 4), were assessed as potential inhibitors of Listeria monocytogenes growth in modified atmosphere packaged (MAP) sliced ham in challenge studies. The influence of the initial inoculation level of L. monocytogenes (101 or 103 CFU g−1) and storage temperature (4 or 8°C) was also examined. The addition of either organic acid salt to MAP sliced ham strongly inhibited the growth of L. monocytogenes during the normal shelf life of the product under ideal refrigeration conditions (4°C) and even under abusive temperature conditions (i.e., 8°C). During the challenge studies and in the absence of either organic acid salt, L. monocytogenes numbers increased by 1,000-fold after 20 days at 8°C and 10-fold after 42 days at 4°C. Both organic acid salt treatments were found to be listeriostatic rather than listericidal. The addition of either organic acid salt to the MAP ham also reduced the growth of indigenous microflora, i.e., aerobic microflora and lactic acid bacteria. The influence of these compounds on the risk of listeriosis in relation to product shelf life is discussed.


Sign in / Sign up

Export Citation Format

Share Document