Cloth-Based Hybridization Array System for the Detection and Identification of Ruminant Species in Animal Feed

2006 ◽  
Vol 69 (2) ◽  
pp. 453-458 ◽  
Author(s):  
JENNIFER ARMOUR ◽  
BURTON W. BLAIS

A cloth-based hybridization array system for the detection and identification of material derived from several ruminant species (cattle, sheep, goat, elk, and deer) in animal feeds has been developed. Primers targeting conserved mitochondrial DNA sequences amplified ruminant DNA in a universal PCR, and the digoxigenin-labeled amplicons were hybridized with an array of species-specific oligonucleotide capture probes on a polyester cloth support. The hybridized amplicons were detected on the cloth by sequential reactions with antidigoxigenin antibody–peroxidase conjugate and chromogenic substrate solution. This cloth-based hybridization array system provided sensitive and specific detection and identification of meat meal containing rendered cattle, sheep, goat, elk, and deer material blended in feeds.

2007 ◽  
Vol 70 (12) ◽  
pp. 2900-2905 ◽  
Author(s):  
JOHANNA MURPHY ◽  
JENNIFER ARMOUR ◽  
BURTON W. BLAIS

A cloth-based hybridization array system (CHAS) previously developed for the detection of animal species for which prohibited materials have been specified (cattle, sheep, goat, elk, and deer) has been expanded to include the detection of animal species for which there are no prohibitions (pig and horse) in Canadian and American animal feeds. Animal species were identified by amplification of mitochondrial DNA sequences by PCR and subsequent hybridization of the amplicons with an array of species-specific oligonucleotide capture probes immobilized on a polyester cloth support, followed by an immunoenzymatic assay of the bound PCR products. The CHAS permitted sensitive and specific detection of meat meals from different animal species blended in a grain-based feed and should provide a useful adjunct to microscopic examination for the identification of prohibited materials in animal feeds.


2006 ◽  
Vol 69 (4) ◽  
pp. 891-896 ◽  
Author(s):  
FEDERICA BELLAGAMBA ◽  
SERGIO COMINCINI ◽  
LUCA FERRETTI ◽  
FRANCO VALFRÈ ◽  
VITTORIO M. MORETTI

This study describes a method for quantitative and species-specific detection of animal DNA from different species (cattle, sheep, goat, swine, and chicken) in animal feed and feed ingredients, including fish meals. A quantitative real-time PCR approach was carried out to characterize species-specific sequences based on the amplification of prion-protein sequence. Prion-protein species-specific primers and TaqMan probes were designed, and amplification protocols were optimized in order to discriminate the different species with short PCR amplicons. The real-time quantitative PCR approach was also compared to conventional species-specific PCR assays. The real-time quantitative assay allowed the detection of 10 pg of ruminant, swine, and poultry DNA extracted from meat samples processed at 130°C for 40 min, 200 kPa. The origin of analyzed animal meals was characterized by the quantitative estimation of ruminant, swine, and poultry DNA. The TaqMan assay was used to quantify ruminant DNA in feedstuffs with 0.1% of meat and bone meal. In conclusion, the proposed molecular approach allowed the detection of species-specific DNA in animal meals and feedstuffs.


2018 ◽  
Vol 66 (5) ◽  
pp. 378-383
Author(s):  
S.K. Rajasekharan ◽  
A.K. Ray ◽  
S. Ramesh ◽  
S. Kannappan Mohanvel

2017 ◽  
Vol 62 (2) ◽  
pp. 167-177
Author(s):  
Natasa Duduk ◽  
Miljan Vasic ◽  
Nina Vuckovic ◽  
Aleksandra Zebeljan ◽  
Ivana Vico

Monilinia spp. are economically important pathogens of pome and stone fruits. Four Monilinia species are present in Serbia - Monilinia fructigena, M. laxa, M. fructicola and Monilia polystroma. As detection and identification of Monilinia species are complex, the aim of this research was to evaluate species-specific primers in PCR in order to standardize fast and reliable molecular methods for differentiation between the four Monilinia species. Isolates of M. fructigena, M. laxa, M. fructicola and M. polystroma from apple fruit and referent isolates from Italy and Japan were used for testing. Specific molecular detection of M. laxa was obtained using ITS1Mlx/ITS4Mlx and Ml-Mfg-F2/Ml-Mfc-R1 primer pairs, and M. fructicola using ITS1Mfcl/ITS4Mfcl and Mfc-F1/Mfc-R1 primer pairs. ITS1Mfgn/ITS4Mfgn and ITS1/Mfg-R2 primer pairs, described as M. fructigena species-specific, amplified M. fructigena and M. polystroma, as well. Specific detection of these two species as well as of all four tested Monilinia species was obtained using the reverse primer MO368-5 with forward primers MO368-8R, Laxa-R2 and MO368-10R in separate or in Multiplex PCR reactions.


PLoS ONE ◽  
2014 ◽  
Vol 9 (8) ◽  
pp. e104195 ◽  
Author(s):  
Zhenyue Lin ◽  
Shiqiang Xu ◽  
Youxiong Que ◽  
Jihua Wang ◽  
Jack C. Comstock ◽  
...  

2009 ◽  
Vol 72 (5) ◽  
pp. 1055-1062 ◽  
Author(s):  
SAIRA CAWTHRAW ◽  
GINNY C. SAUNDERS ◽  
TREVOR C. MARTIN ◽  
JASON SAWYER ◽  
OTTO WINDL ◽  
...  

A method for the detection and identification of “prohibited” mammalian or avian material in animal feed was developed and assessed through the analysis of DNA. A generic real-time PCR assay was designed to detect the presence of mammalian and avian mitochondrial DNA 16S rRNA genes in animal feed samples. Samples positive with this screening method were further investigated using identification assays to detect the 16S rRNA gene from bovine, ovine, porcine, and avian species and to determine whether the DNA originated from species whose material is prohibited from inclusion in farmed animal feed. An internal positive control was coamplified in the 16S real-time PCR assays to monitor PCR amplification efficiency and avoid potential false-negative results. Using vegetable-based feed standards spiked with meat and bone meal generated with a commercial rendering process, 0.1% meat and bone meal could be detected using the general and species-specific 16S assays. The species-specific assays had 100% specificity for the homologous target species. The 16S real-time PCR assays were evaluated alongside existing tests based on protein evaluation or microscopic examination for a wide range of commercial animal feed samples. In total, 111 (0.76%) of 14,678 samples examined contained prohibited material based on the results from at least one of these tests. However, most positive results did not represent noncompliance because they were associated with samples of pet food, which can legitimately contain material prohibited for use in food for farmed animals. The species-specific 16S assays confirmed the presence of prohibited material in 75% of the 111 samples, whereas the existing protein and microscope tests confirmed the presence of this material in 25 and 54% of the samples, respectively.


1999 ◽  
Vol 65 (10) ◽  
pp. 4688-4692 ◽  
Author(s):  
Andreas Bubert ◽  
Inge Hein ◽  
Marcus Rauch ◽  
Angelika Lehner ◽  
ByoungSu Yoon ◽  
...  

ABSTRACT The iap gene encodes the protein p60, which is common to all Listeria species. A previous comparison of the DNA sequences indicated conserved and species-specific gene portions. Based on these comparisons, a combination consisting of only five different primers that allows the specific detection and differentiation ofListeria species with a single multiplex PCR and subsequent gel analysis was selected. One primer was derived from the conserved 3′ end and is specific for all Listeria species; the other four primers are specific for Listeria monocytogenes,L. innocua, L. grayi, or the three grouped species L. ivanovii, L. seeligeri, and L. welshimeri, respectively. The PCR method, which also enables the simultaneous detection of L. monocytogenes and L. innocua, was evaluated against conventional biotyping with 200 food hygiene-relevant Listeria strains. The results indicated the superiority of this technique. Thus, this novel type of multiplex PCR may be useful for rapid Listeria species confirmation and for identification of Listeria species for strains isolated from different sources.


2005 ◽  
Vol 173 (4S) ◽  
pp. 18-18
Author(s):  
Joseph C. Liao ◽  
Mitra Mastali ◽  
David A. Haake ◽  
Bernard M. Churchill

2008 ◽  
Vol 53 (No. 3) ◽  
pp. 97-104 ◽  
Author(s):  
M. Zouhar ◽  
M. Marek ◽  
O. Douda ◽  
J. Mazáková ◽  
P. Ryšánek

<i>Ditylenchus dipsaci</i>, the stem nematode, is a migratory endoparasite of over 500 species of angiosperms. The main method of <i>D. dipsaci</i> control is crop rotation, but the presence of morphologically indistinguishable host races with different host preferences makes rotation generally ineffective. Therefore, a sensitive, rapid, reliable, as well as cost effective technique is needed for identification of <i>D. dipsaci</i> in biological samples. This study describes the development of species-specific pairs of PCR oligonucleotides for detection and identification of the <i>D. dipsaci</i> stem nematode in various plant hosts. Designed DIT-2 primer pair specifically amplified a fragment of 325 bp, while DIT-5 primer pair always produced a fragment of 245 bp in all <i>D. dipsaci</i> isolates. Two developed SCAR primer pairs were further tested using template DNA extracted from a collection of twelve healthy plant hosts; no amplification was however observed. The developed PCR protocol has proved to be quite sensitive and able to specifically detect <i>D. dipsaci</i> in artificially infested plant tissues.


Sign in / Sign up

Export Citation Format

Share Document