Data Analysis of the Inactivation of Foodborne Microorganisms under High Hydrostatic Pressure To Establish Global Kinetic Parameters and Influencing Factors

2011 ◽  
Vol 74 (12) ◽  
pp. 2097-2106 ◽  
Author(s):  
SOFÍA M. SANTILLANA FARAKOS ◽  
MARCEL H. ZWIETERING

The inactivation rate of foodborne microorganisms under high hydrostatic pressure (HHP) is influenced by factors such as substrate, species, strain, temperature, pH, and stage of growth of the cell. In this study, 445 DP-values from previously published data were analyzed, including those from bacterial spores, vegetative cells, and yeasts. Three secondary linear inactivation models with pressure and/or temperature as process parameters were tested to estimate global log DP-, zP-, and zT-values, and the influence of these parameters and additional factors was assessed. The results show that significant differences in microbial resistance are mainly the result of temperature, highlighting the need for its inclusion as a process parameter. Perhaps due to the large number of data and very distinct factors, the remaining factors showed no significant differences in microbial resistance, except in the case of Clostridium spp. in soy milk, which showed decreased resistance in this substrate compared with its behavior in other products. These results serve to establish priorities among factors influencing HHP inactivation and to estimate global kinetic parameters as a basis for setting target levels of inactivation. Moreover, they can be used as a benchmark for comparison of microbial HHP inactivation data gathered in future studies.

2013 ◽  
Vol 33 (1) ◽  
pp. 73-82 ◽  
Author(s):  
B. Sokołowska ◽  
S. Skąpska ◽  
M. Fonberg-Broczek ◽  
J. Niezgoda ◽  
M. Chotkiewicz ◽  
...  

2015 ◽  
Vol 8 (1) ◽  
pp. 86-94 ◽  
Author(s):  
Cs. Németh ◽  
L. A. Castillo ◽  
F. Horváth ◽  
I. Zeke ◽  
L. Friedrich ◽  
...  

Abstract There are numerous new technologies whose implementation in food industry is hampered by the fact that people hesitate to invest in expensive systems which they cannot be sure will work or at least are questionable in terms of a given product. Until recently, preservation by HHP, high hydrostatic pressure, was such a technology, and still is today in some branches of the food industry. Investigations were conducted to answer the question of whether the literature, the laboratory, and the industrial (or at least pilot plant) measurements and results agree with one another. We compared the literature data with two HHP systems which were significantly different in terms of treatment capacity, but their efficiency in killing microbes was studied under the same treatment parameters. Our results show that in nearly all cases only minimal differences exist between the data in the literature and the measurements taken on the two appliances.


2013 ◽  
Vol 41 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Mahfuzur R. Sarker ◽  
Saeed Akhtar ◽  
J. Antonio Torres ◽  
Daniel Paredes-Sabja

2003 ◽  
Vol 69 (12) ◽  
pp. 7124-7129 ◽  
Author(s):  
Taisuke Watanabe ◽  
Soichi Furukawa ◽  
Junichi Hirata ◽  
Tetsuya Koyama ◽  
Hirokazu Ogihara ◽  
...  

ABSTRACT High-pressure CO2 treatment has been studied as a promising method for inactivating bacterial spores. In the present study, we compared this method with other sterilization techniques, including heat and pressure treatment. Spores of Bacillus coagulans, Bacillus subtilis, Bacillus cereus, Bacillus licheniformis, and Geobacillus stearothermophilus were subjected to CO2 treatment at 30 MPa and 35°C, to high-hydrostatic-pressure treatment at 200 MPa and 65°C, or to heat treatment at 0.1 MPa and 85°C. All of the bacterial spores except the G. stearothermophilus spores were easily inactivated by the heat treatment. The highly heat- and pressure-resistant spores of G. stearothermophilus were not the most resistant to CO2 treatment. We also investigated the influence of temperature on CO2 inactivation of G. stearothermophilus. Treatment with CO2 and 30 MPa of pressure at 95°C for 120 min resulted in 5-log-order spore inactivation, whereas heat treatment at 95°C for 120 min and high-hydrostatic-pressure treatment at 30 MPa and 95°C for 120 min had little effect. The activation energy required for CO2 treatment of G. stearothermophilus spores was lower than the activation energy for heat or pressure treatment. Although heat was not necessary for inactivationby CO2 treatment of G. stearothermophilus spores, CO2 treatment at 95°C was more effective than treatment at 95°C alone.


2004 ◽  
Vol 52 (4) ◽  
pp. 479-487 ◽  
Author(s):  
Cs. Pribenszky ◽  
M. Molnár ◽  
S. Cseh ◽  
L. Solti

Cryoinjuries are almost inevitable during the freezing of embryos. The present study examines the possibility of using high hydrostatic pressure to reduce substantially the freezing point of the embryo-holding solution, in order to preserve embryos at subzero temperatures, thus avoiding all the disadvantages of freezing. The pressure of 210 MPa lowers the phase transition temperature of water to -21°C. According to the results of this study, embryos can survive in high hydrostatic pressure environment at room temperature; the time embryos spend under pressure without significant loss in their survival could be lengthened by gradual decompression. Pressurisation at 0°C significantly reduced the survival capacity of the embryos; gradual decompression had no beneficial effect on survival at that stage. Based on the findings, the use of the phenomena is not applicable in this form, since pressure and low temperature together proved to be lethal to the embryos in these experiments. The application of hydrostatic pressure in embryo cryopreservation requires more detailed research, although the experience gained in this study can be applied usefully in different circumstances.


2010 ◽  
Vol 37 (6) ◽  
pp. 641-645 ◽  
Author(s):  
Can-Xin XU ◽  
Chun WANG ◽  
Bing-Yang ZHU ◽  
Zhi-Ping GAO ◽  
Di-Xian LUO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document